Chinese Journal of Magnetic Resonance
Previous Articles Next Articles
DING Guang-liang*,CHOPP Michael,LI Lian,ZHANG Li,ZHANG Zheng-gang,LI Qing-jiang,JIANG Quan
Received:
2013-08-12
Revised:
2013-11-02
Online:
2014-03-05
Published:
2014-03-05
About author:
DING Guang-liang(1963-), male, born in Jiangsu, PhD., his research focuses on MRI, Tel: +01-313-916-2620,E-mail: gdingl@hfhs.org. *Corresponding author.
Supported by:
National Institutes of Health, USA (NIH) P01 NS23393, NS42345; R01 NS38292, NS43324, NS48349, HL64766.
CLC Number:
DING Guang-liang*,CHOPP Michael,LI Lian,ZHANG Li,ZHANG Zheng-gang,LI Qing-jiang,JIANG Quan. Magnetic Resonance Imaging of Stroke in the Rat[J]. Chinese Journal of Magnetic Resonance.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Broderick J P, William M. Feinberg lecture: Stroke therapy in the year 2025: Burden, breakthroughs, and barriers to progress[J]. Stroke, 2004, 35: 205-211 [2] Fieschi C, Argentino C, Lenzi G L, et al. Clinical and instrumental evaluation of patients with ischemic stroke within the first six hours[J]. J Neurol Sci, 1989, 91: 311-321 [3] NINDS. The national institute of neurological disorders and stroke rt-pa stroke study group: Tissue plasminogen activator for acute ischemic stroke[J]. N Engl J Med, 1995, 333: 1 581-1 587 [4] Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke[J]. N Engl J Med, 2008, 359: 1 317-1 329. [5] Zhang Z G, Chopp M. Neurorestorative therapies for stroke: Underlying mechanisms and translation to the clinic[J]. Lancet Neurol, 2009, 8: 491-500. [6] Chopp M, Li Y, Zhang J. Plasticity and remodeling of brain[J]. J Neurol Sci, 2008, 265: 97-101. [7] Zhang Z G, Jiang Q, Zhang R, et al. Magnetic resonance imaging and neurosphere therapy of stroke in rat[J]. Ann Neurol, 2003, 53: 259-263. [8] Chopp M, Li Y. Treatment of stroke and intracerebral hemorrhage with cellular and pharmacological restorative therapies[J]. Acta Neurochir Suppl, 2008, 105: 79-83. [9] Chopp M, Zhang Z G, Jiang Q. Neurogenesis, angiogenesis, and MRI indices of functional recovery from stroke[J]. Stroke, 2007, 38: 827-831. [10] Zhang R L, Chopp M, Zhang Z G, et al. A rat model of focal embolic cerebral ischemia[J]. Brain Res, 1997, 766(1-2): 83-92. [11] Haase A, Frahm J, Matthaei D, et al. Flash imaging. Rapid nmr imaging using low flip-angle pulses[J]. J Mag Res, 1986, 67: 258-266. [12] Ding G, Jiang Q, Zhang L, et al. Analysis of combined treatment of embolic stroke in rat with r-tpa and a gpiib/iiia inhibitor[J]. J Cereb Blood Flow Metab, 2005, 25: 87-97. [13] Williams D, Detre J, Leigh J, et al. Magnetic resonance imaging of perfusion using spin inversion of arterial water[J]. Proc Nat'l Acad Sci USA, 1992, 89: 212-216. [14] Dixon W T, Du L N, Faul D D, et al. Projection angiograms of blood labeled by adiabatic fast passag[J]. Magn Reson Med, 1986, 3: 454-462. [15] Ding G, Jiang Q, Li L, et al. Mri of combination treatment of embolic stroke in rat with rtpa and atorvastatin[J]. J Neurol Sci, 2006, 246: 139-147. [16] Jiang Q, Zhang R L, Zhang Z G, et al. Diffusion-, t2-, and perfusion-weighted nuclear magnetic resonance imaging of middle cerebral artery embolic stroke and recombinant tissue plasminogen activator intervention in the rat[J]. J Cereb Blood Flow Metab, 1998, 18: 758-767. [17] Hoehn-Berlage M, Eis M, Back T, et al. Changes of relaxation times (t1, t2) and apparent diffusion coefficient after permanent middle cerebral artery occlusion in the rat: Temporal evolution, regional extent, and comparison with histology[J]. Magn Reson Med, 1995, 34: 824-834. [18] Hoehn-Berlage M, Norris D G, Kohno K, et al. Evolution of regional changes in apparent diffusion coefficient during focal ischemia of rat brain: The relationship of quantitative diffusion NMR imaging to reduction in cerebral blood flow and metabolic disturbances[J]. J Cereb Blood Flow Metab, 1995, 15: 1 002-1 011. [19] Knight R A, Dereski M O, Helpern J A, et al. Magnetic resonance imaging assessment of evolving focal cerebral ischemia. Comparison with histopathology in rats[J]. Stroke, 1994, 25: 1 252-1 261. [20] DeWitt L D, Kistler J P, Miller D C, et al. NMR-neuropathologic correlation in stroke[J]. Stroke, 1987, 18: 342-351. [21] Levesque I, Sled J G, Narayanan S, et al. The role of edema and demyelination in chronic t1 black holes: A quantitative magnetization transfer study[J]. J Magn Reson Imaging, 2005, 21: 103-110. [22] Jacobs M A, Zhang Z G, Knight R A, et al. A model for multiparametric MRI tissue characterization in experimental cerebral ischemia with histological validation in rat: Part 1[J]. Stroke, 2001, 32: 943-949. [23] Soltanian-Zadeh H, Windham J P. Novel and general approach to linear filter design for contrast-to-noise ratio enhancement of magnetic resonance images with multiple interfering features in the scene[J]. J Electron Imaging, 1992, 1: 171-182. [24] Ding G, Jiang Q, Li L, et al. Characterization of cerebral tissue by MRI map isodata in embolic stroke in rat[J]. Brain Res, 2006, 1 084: 202-209. [25] Ding G, Jiang Q, Zhang L, et al. Multiparametric isodata analysis of embolic stroke[J]. J Neurol Sci, 2004, 223: 135-143. [26] Ding G L, Jiang Q, Li L, et al. Cerebral tissue repair and atrophy after embolic stroke in rat: An MRI study of erythropoietin therapy[J]. J Neurosci Res, 2010, 88(14): 3 206-3 214. [27] Henkelman R M, Stanisz G J, Graham S J. Magnetization transfer in MRI: A review[J]. NMR Biomed, 2001, 14: 57-64. [28] Look D C, Locker D R. Time saving in measurement of NMR and epr relaxation times[J]. Rev Sci Instrum, 1970, 41: 250-251. [29] Patlak C S, Blasberg R G. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations[J]. J Cereb Blood Flow Metab, 1985, 5: 584-590. [30] Patlak C S, Blasberg R G, Fenstermacher J D. Graphical evaluation of blood-to-brain transfer constants from multipletime uptake data[J]. J Cereb Blood Flow Metab, 1983, 3: 1-7. [31] Ewing J R, Jiang Q, Boska M, et al. T1 and magnetization transfer at 7 tesla in acute ischemic infarct in the rat[J]. Magn Reson Med, 1999, 41: 696-705. [32] Ding G, Nagesh V, Jiang Q, et al. Early prediction of gross hemorrhagic transformation by noncontrast agent mri cluster analysis after embolic stroke in rat[J]. Stroke, 2005, 36: 1 247-1 252. [33] Quarles C C, Gore J C, Xu L, et al. Comparison of dual-echo dsc-mri- and dce-MRI-derived contrast agent kinetic parameters[J]. Magn Reson Imaging, 30: 944-953. [34] Ding G, Jiang Q, Li L, et al. Detection of bbb disruption and hemorrhage by gd-dtpa enhanced MRI after embolic stroke in rat[J]. Brain Res, 2006, 1114: 195-203. [35] Haring H P, Berg E L, Tsurushita N, et al. E-selectin appears in nonischemic tissue during experimental focal cerebral ischemia[J]. Stroke, 1996, 27(8): 1 386-1 391 (discussion 1 391-1 392). [36] Okada Y, Copeland B R, Mori E, et al. P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion[J]. Stroke, 1994, 25: 202-211. [37] Hamann G F, Okada Y, del Zoppo G J. Hemorrhagic transformation and microvascular integrity during focal cerebral ischemia/reperfusion[J]. J Cereb Blood Flow Metab, 1996, 16: 1 373-1 378. [38] Yablonskiy D A, Haacke E M. Theory of NMR signal behavior in magnetically inhomogeneous tissues: The static dephasing regime[J]. Magn Reson Med, 1994, 32: 749-763. [39] Haacke E M, Mittal S, Wu Z, et al. Susceptibility-weighted imaging: Technical aspects and clinical applications, part 1[J]. AJNR Am J Neuroradiol, 2009, 30: 19-30. [40] Mittal S, Wu Z, Neelavalli J, et al. Susceptibility-weighted imaging: Technical aspects and clinical applications, part 2[J]. AJNR Am J Neuroradiol, 2009, 30: 232-252. [41] Reichenbach J R, Barth M, Haacke E M, et al. High-resolution MR venography at 3.0 tesla[J]. J Comput Assist Tomogr, 2000, 24: 949-957. [42] Reichenbach J R, Venkatesan R, Schillinger D J, et al. Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent[J]. Radiology, 1997, 204: 272-277. [43] Haacke E M, Cheng N Y, House M J, et al. Imaging iron stores in the brain using magnetic resonance imaging[J]. Magn Reson Imaging, 2005, 23: 1-25. [44] Ding G, Jiang Q, Li L, et al. Angiogenesis detected after embolic stroke in rat brain using magnetic resonance T2*wi[J]. Stroke, 2008, 39: 1 563-1 568. [45] Zhang L, Zhang R L, Wang Y, et al. Functional recovery in aged and young rats after embolic stroke: Treatment with a phosphodiesterase type 5 inhibitor[J]. Stroke, 2005, 36: 847-852. [46] Jiang Q, Zhang R L, Zhang Z G, et al. Magnetic resonance imaging characterization of hemorrhagic transformation of embolic stroke in the rat[J]. J Cereb Blood Flow Metab, 2002, 22: 559-568. [47] Li L, Jiang Q, Ding G L, et al. Effects of route administration on migration and distribution of neural progenitor cells transplanted into rats with focal cerebral ischemia, an mri study[J]. J Cereb Blood Flow Metab, 2010, 30: 653-662. [48] Li L, Jiang Q, Zhang L, et al. Ischemic cerebral tissue response to subventricular zone cell transplantation measured by iterative self-organizing data analysis technique algorithm[J]. J Cereb Blood Flow Metab, 2006, 26: 1 366-1 377. [49] Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review[J]. NMR Biomed, 2002, 15: 435-455. [50] Mori S, van Zijl P C. Fiber tracking: Principles and strategies - a technical review[J]. NMR Biomed, 2002, 15: 468-480. [51] Sotak C H. The role of diffusion tensor imaging in the evaluation of ischemic brain injury - a review[J]. NMR Biomed, 2002, 15: 561-569. [52] Watanabe T, Honda Y, Fujii Y, et al. Three-dimensional anisotropy contrast magnetic resonance axonography to predict the prognosis for motor function in patients suffering from stroke[J]. J Neurosurg, 2001, 94 :955-960. [53] Ding G, Jiang Q, Li L, et al. Magnetic resonance imaging investigation of axonal remodeling and angiogenesis after embolic stroke in sildenafil-treated rats[J]. J Cereb Blood Flow Metab, 2008, 28: 1 440-1 448. [54] Tuch D S, Reese T G, Wiegell M R, et al. Diffusion MRI of complex neural architecture[J]. Neuron, 2003, 40: 885-895. [55] Jensen J H, Helpern J A, Ramani A, et al. Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53: 1 432-1 440. [56] Jiang Q, Qu C, Chopp M, et al. MRI evaluation of axonal reorganization after bone marrow stromal cell treatment of traumatic brain injury[J]. NMR Biomed, 2011, 24: 1 119-1 128. [57] Zhou J, Payen J F, Wilson D A, et al. Using the amide proton signals of intracellular proteins and peptides to detect pheffects in MRI[J]. Nat Med, 2003, 9: 1 085-1 090. [58] Sun P Z, Zhou J, Sun W, et al. Detection of the ischemic penumbra using ph-weighted MRI[J]. J Cereb Blood Flow Metab, 2007, 27: 1 129-1 136. [59] Jensen J H, Chandra R. MR imaging of microvasculature[J]. Magn Reson Med, 2000, 44: 224-230. [60] An H, Lin W. Quantitative measurements of cerebral blood oxygen saturation using magnetic resonance imaging[J]. J Cereb Blood Flow Metab, 2000, 20: 1 225-1 236. |
[1] | CHEN Xiao-ying, YU Gang-jin, MAO Shi-zhen, LIU Mai-li, DU You-ru. Mixing-Induced Decreases in Critical Micelle Concentration in Aqueous Solution of Surfactants:Probing into the Mechanisms with 1H NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 219-224. |
[2] | WEI Guo-jing, YI Pei-wei, TAO Quan, FENG Yan-qiu. Comparisons of Different CEST Quantification Metrics Applied in Acute Parkinson's Disease Mouse Model [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 195-207. |
[3] | CHEN Li, TAN Xiao-li, ANTAL Rockenbauer, WANG Run-ling, LIU Yang-ping. Efficient Synthesis and Characterization of PEGylated/Deuterated Derivatives of Monophosphonated Tetrathiatriarylmethyl Radicals [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 208-218. |
[4] | ZHAI Guo-qiang, ZHANG Miao, BO Bin-shi, WANG Yi, FAN Ming-xia, LI Jian-qi. Quantifying Liver Fat with Combined Complex-Based and Magnitude-Based Water-Fat Separation [J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 417-426. |
[5] | HUANG Zhao-hui, ZHANG Zhi, CHEN Li, CHEN Jun-fei, ZHANG Zhen, CHEN Fang, LIU Chao-yang. A Time-Division Multiplexing Design for Gradient Preemphasis Module in Magnetic Resonance Imaging Scanner [J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 465-474. |
[6] | CHAI Qing-huan, SU Guan-qun, NIE Sheng-dong. Compressive Sensing Low-Field MRI Reconstruction with Dual-Tree Wavelet Transform and Wavelet Tree Sparsity [J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 486-497. |
[7] | LIU Ying, SONG Ming-hui, WANG Kun, ZHANG Hao-wei. A Magnetic Resonance Receiver System Design Based on All Programmable System-on-a-Chip and LabVIEW [J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 475-485. |
[8] | WANG Hong-zhi, ZHAO Di, YANG Li-qin, XIA Tian, ZHOU Xiao-yue, MIAO Zhi-ying. An Approach for Training Data Enrichment and Batch Labeling in AI+MRI Aided Diagnosis [J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 447-456. |
[9] | CHEN Hai-yan, ZHAO Shi-long, LI Xiao-nan, LIU Guo-qiang, HU Li-li, LIU Tao. B1 Mapping on Low-Field Permanent Magnet MRI Scanner [J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 498-504. |
[10] | JIANG Fan, WANG Yuan-jun. Construction of Human Brain Templates with Diffusion Tensor Imaging Data: A Review [J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 520-530. |
[11] | WANG Yuan-jun, LIU Yu. A Groupwise Registration Method Based on Topology Center of Images [J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 457-464. |
[12] | TAO Quan, YI Pei-wei, WEI Guo-jing, FENG Yan-qiu. pH Imaging Based on Chemical Exchange Saturation Transfer: Principles, Methods, Applications and Recent Progresses [J]. Chinese Journal of Magnetic Resonance, 2018, 35(4): 505-519. |
[13] | YANG Chang, CHEN Jun-fei, CHEN Li, ZHANG Zhi, FENG Ji-wen, CHEN Fang, LIU Chao-yang. Design and Implementation of NMR Permanent Magnet Precision Temperature Controller [J]. Chinese Journal of Magnetic Resonance, 2018, 35(3): 294-302. |
[14] | XU Jia-wen, XU Jian, ZHOU Xiao-dong, ZHANG Cong, CHEN Qun. Multi-GPU Distributed Magnetic Resonance Image Reconstruction Based on Gadgetron [J]. Chinese Journal of Magnetic Resonance, 2018, 35(3): 303-317. |
[15] | LI Chun-fa, LIU Guang, WANG Qin, LIU Zheng. Analyzing Pentaerythritol Stearate Homologs with NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2018, 35(3): 363-373. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||