Chinese Journal of Magnetic Resonance
Previous Articles Next Articles
ZHANG Zheng-feng1,2, YANG Jun1*
Received:
2012-05-24
Revised:
2012-06-19
Online:
2013-06-05
Published:
2013-06-05
About author:
张正逢(1985-),男,江西泰和人,博士研究生,主要从事蛋白质的固体核磁共振研究.
*通讯联系人:杨俊,电话:027-87199723,E-mail:yangjun@wipm.ac.cn.
Supported by:
国家自然科学基金资助项目(21075133).
CLC Number:
ZHANG Zheng-feng1,2, YANG Jun1*. Solid-State NMR Studies on Amyloid Fibrils: Recent Progresses[J]. Chinese Journal of Magnetic Resonance.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1]Sipe J D.Amyloidosis[J].Annu Rev Biochem,1992,947-975. [2] Chiti F,Dobson C M.Protein misfolding, functional amyloid, and human disease[J]. Annu Rev Biochem,2006,333-366. [3] Heise H.Solid-state NMR spectroscopy of amyloid proteins[J]. ChemBioChem, 2008, 9(2): 179-189. [4] Ye Chao-hui(叶朝辉). Magic angle spinning NMR spectroscopy(魔角旋转核磁共振波谱学)[J]. Chinese J Magn Reson(波谱学杂志),1984,1(4): 415-454. [5] Yu Zhi-wu(喻志武), Zheng An-min(郑安民),Wang Qiang(王强),et al. Acidity characterization of solid acid catalysts by solid-state NMR spectroscopy: A review on recent progresses(固体核磁共振研究固体酸催化剂酸性进展)[J].Chinese J Magn Reson(波谱学杂志), 2010, 27(4): 485-515. [6] Andrew E R,Bradbury A,Eades R G.Nuclear magnetic resonance spectra from a crystal rotated at high speed[J].Nature,1958,182(4 650): 1 659-1 659. [7] Lowe I J.Free induction decays of rotating solids[J]. Phys Rev Lett,1959, 2(7): 285-287. [8] Bennett A E, Rienstra C M,Auger M,et al.Heteronuclear decoupling in rotating solids[J]. J Chem Phys,1995,103(16): 6 951-6 958. [9] Fung B M, Khitrin A K, Ermolaev K. An improved broadband decoupling sequence for liquid crystals and solids[J].J Magn Reson,2000,142(1): 97-101. [10] Detken A,Hardy E H,Ernst M,et al.Simple and efficient decoupling in magic-angle spinning solid state NMR: the XiX scheme[J]. Chem Phys Lett,2002,356(3-4): 298-304. [11] Weingarth M, Tekely P,Bodenhausen G.Efficient heteronuclear decoupling by quenching rotary resonance in solid-state NMR[J]. Chem Phys Lett,2008, 466(4-6): 247-251. [12] Pines A,Gibby M G,Waugh J S.Proton-enhanced nmr of dilute spins in solids[J].J Chem Phys,1973,59(2): 569-590. [13] Schaefer J,Stejskal E O.C-13 nuclear magnetic-resonance of polymers spinning at magic angle[J].J Am Chem Soc,1976,98(4):1 031-1 032. [14] Hartmann S R,Hahn E L.Nuclear double resonance in rotating frame[J].Phys Rev,1962, 128(5): 2 042-2 053. [15] Schaefer J,Mckay R A,Stejskal E O.Double cross polarization NMR of solids[J].J Magn Reson,1979,34(2): 443-447. [16] Heise H,Hoyer W,Becker S,et al. Molecular-level secondary structure,polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR[J].Proc Natl Acad Sci USA,2005,102(44): 15 871-15 876. [17] Xuan Jin-song(宣劲松),Wang Jin-feng(王金凤).Novel isotope labeling strategies for protein solution NMR spectroscopy: A review(核磁共振研究中蛋白质样品的同位素标记策略)[J]. Chinese J Magn Reson(波谱学杂志),2008,25(3): 435-445. [18] Petkova A T,Ishii Y,Balbach J J,et al.A structural model for Alzheimer's beta-amyloid fibrils based on experimental constraints from solid state NMR[J]. Proc Natl Acad Sci USA, 2002,99(26):16 742-16 747. [19] Abdine A,Verhoeven M A,Park K H,et al.Structural study of the membrane protein MscL using cell-free expression and solid-state NMR[J].J Magn Reson,2010,204(1): 155-159. [20] Becker J,Ferguson N,Flinders J,et al. A sequential assignment procedure for proteins that have intermediate line widths in MAS NMR spectra: Amyloid fibrils of human CA150.WW2[J]. ChemBioChem,2008, 9(12):1 946-1 952. [21] Debelouchina G T, Platt G W,Bayro M J,et al.Magic angle spinning NMR analysis of beta(2)-microglobulin amyloid fibrils in two distinct morphologies[J].J Am Chem Soc, 2010, 132(30): 10 414-10 423. [22] Helmus J J,Surewicz K,Apostol M I,et al.Intermolecular alignment in Y145stop human prion protein amyloid fibrils probed by solid-state NMR spectroscopy[J].J Am Chem Soc,2011, 133(35): 13 934-13 937. [23] Loquet A,Lv G,Giller K,et al.(13)C spin dilution for simplified and complete solid-state NMR resonance assignment of insoluble biological assemblies[J].J Am Chem Soc, 2011,133(13): 4 722-4 725. [24] Bennett A E,Ok J H,Griffin R G,et al. Chemical-shift correlation spectroscopy in rotating solids: Radio frequency-driven dipolar recoupling and longitudinal exchange[J]. J Chem Phys,1992, 96(11): 8 624-8 627. [25] Verel R,Baldus M,Ernst M,et al.A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques[J].Chem Phys Lett,1998, 287(3-4): 421-428. [26] Hohwy M,Rienstra C M,Jaroniec C P,et al.Fivefold symmetric homonuclear dipolar recoupling in rotating solids: Application to double quantum spectroscopy[J].J Chem Phys, 1999,110(16): 7 983-7 992. [27] Castellani F,Van Rossum B,Diehl A,et al. Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy[J].Nature,2002,420(6 911): 98-102. [28] Takegoshi K,Nakamura S,Terao T.C-13,H-1 dipolar-assisted rotational resonance in magic-angle spinning NMR[J]. Chem Phys Lett,2001,344(5-6): 631-637. [29] Baldus M,Petkova A T,Herzfeld J,et al.Cross polarization in the tilted frame: Assignment and spectral simplification in heteronuclear spin systems[J].Mol Phys,1998, 95(6): 1 197-1 207. [30] Gullion T, Schaefer J. Rotational-echo double-resonance NMR[J].J Magn Reson,1989, 81(1): 196-200. [31] Hing A W,Vega S,Schaefer J.Transferred-echo double-resonance NMR[J].J Magn Reson,1992, 96(1): 205-209. [32] Raleigh D P,Levitt M H,Griffin R G. Rotational resonance in solid-state NMR[J]. Chem Phys Lett,1988, 146(1-2): 71-76. [33] Tycko R,Dabbagh G.Measurement of nuclear magnetic dipole-dipole couplings in magic angle spinning NMR[J].Chem Phys Lett,1990,173(5-6): 461-465. [34] Nielsen N C, Bildsoe H, Jakobsen H J,et al.Double-quantum homonuclear rotary resonance: Efficient dipolar recovery in magic angle spinning nuclear magnetic resonance[J].J Chem Phys,1994,101(3): 1 805-1 812. [35] Sun B Q, Costa P R, Kocisko D,et al. Internuclear distance measurements in solid-state nuclear magnetic resonance: Dipolar recoupling via rotor synchronized spin locking[J].J Chem Phys,1995,102(2): 702-707. [36] Lee Y K,Kurur N D,Helmle M,et al.Efficient dipolar recoupling in the NMR of rotating solids: A sevenfold symmetrical radiofrequency pulse sequence[J].Chem Phys Lett,1995, 242(3): 304-309. [37] Hohwy M,Jakobsen H J,Eden M,et al.Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: A compensated C7 pulse sequence[J].J Chem Phys,1998,108(7): 2 686-2 694. [38] Rienstra C M,Hatcher M E,Mueller L J,et al.Efficient multispin homonuclear double-quantum recoupling for magic-angle spinning NMR: C-13/C-13 correlation spectroscopy of U-C-13-erythromycin A[J].J Am Chem Soc,1998,120(41): 10 602-10 612. [39] Costa P R, Sun B Q, Griffin R G. Rotational resonance tickling: Accurate internuclear distance measurement in solids[J].JAm Chem Soc,1997,119(44): 10 821-10 830. [40] Lansbury P T,Costa P R,Griffiths J M,et al.Structural model for the beta-amyloid fibril based on interstrand alignment of an antiparallel-sheet comprising a C-terminal peptide[J]. Nat Struct Biol,1995, 2(11): 990-998. [41] Takegoshi K, Nomura K, Terao T. Rotational resonance in the tilted rotating-frame[J]. Chem Phys Lett,1995,232(5-6): 424-428. [42] Costa P R, Sun B Q, Griffin R G. Rotational resonance NMR: Separation of dipolar coupling and zero quantum relaxation[J].J Magn Reson,2003,164(1): 92-103. [43] Tycko R.Theory of Stochastic dipolar recoupling in solidstate nuclear magnetic resonance[J].J Phys Chem B,2008,112(19): 6 114-6 121. [44] Scholz I,Huber M,Manolikas T,et al.MIRROR recoupling and its application to spin diffusion under fast magic-angle spinning[J].Chem Phys Lett,2008,460(1-3): 278-283. [45] Weingarth M,Demco D E,Bodenhausen G,et al.Improved magnetization transfer in solid-state NMR with fast magic angle spinning[J].Chem Phys Lett,2009,469(4-6):342-348. [46] Hou G J,Yan S,Sun S J,et al.Spin diffusion driven by R-symmetry sequences: Applications to homonuclear correlation spectroscopy in MAS NMR of biological and organic solids[J]. J Am Chem Soc,2011,133(11): 3 943-3 953. [47] Hu B W,Lafon O,Trebosc J,et al.Broad-band homo-nuclear correlations assisted by H-1 irradiation for bio-molecules in very high magnetic field at fast and ultra-fast MAS- frequencies[J].J Magn Reson,2011,212(2): 320-329. [48] Lange A,Luca S,Baldus M.Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids[J].J Am Chem Soc,2002,124(33):9 704-9 705. [49] Lange A,Seidel K,Verdier L,et al.Analysis of proton-proton transfer dynamics in rotating solids and their use for 3D structure determination[J].J Am Chem Soc,2003,125(41): 12 640-12 648. [50] Linser R, Bardiaux B, Higman V,et al.Structure calculation from unambiguous long-range amide and methyl H-1/H-1 distance restraints for a microcrystalline protein with MAS solid-state NMR spectroscopy[J].J Am Chem Soc,2011,133(15): 5 905-5 912. [51] Michal C A,Jelinski L W.REDOR 3D: Heteronuclear distance measurements in uniformly labeled and natural abundance solids[J].J Am Chem Soc,1997,119(38): 9 059-9 060. [52] Hong M,Griffin R G.Resonance assignments for solid peptides by dipolar-mediated C-13/N-15 correlation solid-state NMR[J].J Am Chem Soc,1998,120(28): 7 113-7 114. [53] Hong M. Resonance assignment of C-13/N-15 labeled solid proteins by two- and three- dimensional magic-angle-spinning NMR[J].J Biomol NMR,1999,15(1): 1-14. [54] Jaroniec C P,Filip C,Griffin R G.3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly C-13, N-15-labeled solids[J].J Am Chem Soc,2002,124(36): 10 728-10 742. [55] Lewandowski J R,De Paepe G, Griffin R G. Proton assisted insensitive nuclei cross polarization[J].J Am Chem Soc,2007, 29(4): 728-729. [56] De Paepe G, Lewandowski J R, Loquet A,et al. Proton assisted recoupling and protein structure determination[J].J Chem Phys,2008, 129(24): 245 101 [57] Spera S,Bax A.Empirical correlation between protein backbone conformation and C-alpha and C-beta C-13 nuclear magnetic resonance chemical shifts[J].J Am Chem Soc,1991,113(14): 5 490-5 492. [58] Wishart D S,Sykes B D,Richards F M.The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy[J].Biochem,1992, 31(6): 1 647-1 651. [59] Luca S, Filippov D V,Van Boom J H,et al.Secondary chemical shifts in immobilized peptides and proteins: A qualitative basis for structure refinement under Magic Angle Spinning[J].J Biomol NMR,2001,20(4): 325-331. [60] Cornilescu G,Delaglio F,Bax A.Protein backbone angle restraints from searching a database for chemical shift and sequence homology[J].J Biomol NMR,1999,13(3): 289-302. [61] Ishii Y,Terao T,Kainosho M.Relayed anisotropy correlation NMR: Determination of dihedral angles in solids[J].Chem Phys Lett,1996, 256(1-2): 133-140. [62] Schmidt-Rohr K.Torsion angle determination in solid C-13-labeled amino acids and peptides by separated-local-field double-quantum NMR[J].J Am Chem Soc,1996,118(32): 7 601-7 603. [63] Feng X,Lee Y K,Sandstrom D,et al.Direct determination of a molecular torsional angle by solid-state NMR[J].Chem Phys Lett,1996,257(3-4): 314-320. [64] Bower P V,Oyler N,Mehta M A,et al.Determination of torsion angles in proteins and peptides using solid state NMR[J].J Am Chem Soc,1999,121(36): 8 373-8 375. [65] Costa P R, Gross J D, Hong M,et al.Solid-state NMR measurement of Psi in peptides: a NCCN 2Q-heteronuclear local field experiment[J].Chem Phys Lett,1997, 280(1-2): 95-103. [66] Ladizhansky V,Veshtort M,Griffin R G.NMR determination of the torsion angle Psi in alpha-helical peptides and proteins: The HCCN dipolar correlation experiment[J].J Magn Reson,2002,154(2): 317-324. [67] Chan J C C,Tycko R.Solid-state NMR spectroscopy method for determination of the backbone torsion angle psi in peptides with isolated uniformly labeled residues[J].J Am Chem Soc,2003,125(39): 11 828-11 829. [68] Hong M,Gross J D,Hu W,et al.Determination of the peptide torsion angle phi by N-15 chemical shift and C-13(alpha)H-1(alpha) dipolar tensor correlation in solid-state MAS NMR[J].J Magn Reson,1998,135(1): 169-177. [69] Rienstra C M,Hohwy M,Mueller L J,et al.Determination of multiple torsion-angle constraints in U-C-13, N-15-labeled peptides: 3D H-1/N-15/C-13/H-1 dipolar chemical shift NMR spectroscopy in rotating solids[J].J Am Chem Soc,2002,124(40): 11 908-11 922. [70] Reif B,Hohwy M,Jaroniec C P,et al.NH-NH vector correlation in peptides by solidstate NMR[J].J Magn Reson,2000, 145(1): 132-141. [71] Kloepper K D.Solid-state nuclear magnetic resonance spectroscopy of alpha-synuclein fibrils[D].University of Illinois at Urbana-Champaign, 2008. [72] Antzutkin O N,Leapman R D,Balbach J J,et al. Supramolecular structural constraints on Alzheimer's beta-amyloid fibrils from electron microscopy and solid-state nuclear magnetic resonance[J].Biochem,2002,41(51): 15 436-15 450. [73] Balbach J J,Petkova A T,Oyler N A,et al. Supramolecular structure in full-length Alzheimer's beta-amyloid fibrils: Evidence for a parallel beta-sheet organization from solid-state nuclear magnetic resonance[J].Biophys J,2002,83(2): 1 205-1 216. [74] Luhrs T,Ritter C,Adrian M,et al.3D structure of Alzheimer's amyloid-beta(1-42) fibrils[J].Proc Natl Acad Sci USA,2005,102(48): 17 342-17 347. [75] Bertini I,Gonnelli L,Luchinat C,et al.A new structural model of A beta(40) fibrils[J]. J Am Chem Soc,2011,133(40): 16 013-16 022. [76] Jaroniec C P,Macphee C E,Bajaj V S,et al.High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy[J].Proc Natl Acad Sci USA,2004,101(3): 711-716. [77] Blanco F J,Hess S,Pannell L K,et al.Solid-state NMR data support a helix-loop-helix structural model for the N-terminal half of HIV-1 Rev in fibrillar form[J].J Mol Biol,2001, 313(4): 845-859. [78] Havlin R H,Blanco F J,Tycko R.Constraints on protein structure in HIV-1 Rev and Rev-RNA supramolecular assemblies from two-dimensional solid state nuclear magnetic resonance[J]. Biochem,2007,46(11): 3 586-3 593. [79] Debelouchina G T,Platt G W,Bayro M J,et al.Intermolecular alignment in beta(2)microglobulin amyloid fibrils[J].J Am Chem Soc,2010,32(48): 17 077-17 079. [80] Macias M J,Gervais V,Civera C,et al.Structural analysis of WW domains and design of a WW prototype[J].Nat Struct Biol,2000,7(5): 375-379. [81] Kamihira M,Naito A,Tuzi S,et al.Conformational transitions and fibrillation mechanism of human calcitonin as studied by high-resolution solid-state C-13 NMR[J].Protein Sci,2000, 9(5): 867-877. [82] Kamihira M, Oshiro Y,Tuzi S,et al.Effect of electrostatic interaction on fibril formation of human calcitonin as studied by high resolution solid state C-13 NMR[J].J Biol Chem,2003,278(5): 2 859-2 865. [83] Naito A,Kamihira M,Inoue R,et al.Structural diversity of amyloid fibril formed in human calcitonin as revealed by site-directed C-13 solid-state NMR spectroscopy[J].Magn Reson Chem,2004, 42(2): 247-257. [84] Lim K H,Nguyen T N,Damo S M,et al.Solid-state NMR structural studies of the fibril form of a mutant mouse prion peptide PrP89-143(P101L)[J]. Solid State Nucl Magn Reson, 2006, 29(1-3): 183-190. [85] Tycko R,Savtchenko R,Ostapchenko V G,et al. The alpha-helical C-terminal domain of full-length recombinant PrP converts to an in-register parallel beta-sheet structure in PrP fibrils: Evidence from solid state nuclear magnetic resonance[J]. Biochem, 2010, 49(44): 9 488-9 497. [86] Shewmaker F,Wickner R B,Tycko R.Amyloid of the prion domain of Sup35p has an inregister parallel beta-sheet structure[J].Proc Natl Acad Sci USA,2006,103(52): 19 754-19 759. [87] Van Der Wel P C A,Lewandowski J R,Griffin R G. olid-state NMR study of amyloid- nanocrystals and fibrils formed by the peptide GNNQQNY from yeast prion protein Sup35p[J]. J Am Chem Soc,2007,129(16):5 117-5 130. [88] Chan J C C,Oyler N A,Yau W M,et al. Parallel betasheets and polar zippers in amyloid fibrils formed by residues 10-39 of the yeast prion protein Ure2p[J].Biochem,2005,44(31): 10 669-10 680. [89] Baxa U,Wickner R B,Steven A C,et al. Characterization of beta-sheet structure in Ure2p(1-89) yeast prion fibrils by solid-state nuclear magnetic resonance[J]. Biochem, 2007, 46(45): 13 149-13 162. [90] Loquet A,Bousset L,Gardiennet C,et al.Prion fibrils of Ure2p assembled under-physiological conditions contain highly ordered, natively folded modules[J].J Mol Biol,2009,394(1): 108-118. [91] Engel A,Shewmaker F,Edskes H K,et al. Amyloid of the Candida albicans Ure2p prion domain is infectious and has an in-register parallel beta-sheet structure[J].Biochem,2011,50(27): 5 971-5 978. [92] Kryndushkin D S,Wickner R B,Tycko R.The core of Ure2p prion fibrils is formed by the N-terminal segment in a parallel cross-beta structure: Evidence from solid-state NMR[J]. J Mol Biol,2011,409(2): 263-277. [93] Griffiths J M,Ashburn T T,Auger M,et al.Rotational resonance solid-state NMR elucidates a structural model of pancreatic amyloid[J].J Am Chem Soc,1995, 117(12): 3 539-3 546. [94] Jack E,Newsome M,Stockley P G,et al.The organization of aromatic side groups in an amyloid fibril probed by solid-state H-2 and F-19 NMR spectroscopy[J].J Am Chem Soc,2006, 128(25): 8 098-8 099. [95] Luca S,Yau W M,Leapman R,et al. Peptide conformation and supramolecular organization in amylin fibrils: Constraints from solid-state NMR[J].Biochem,2007,46(47): 13 505-13 522. [96] Madine J,Jack E,Stockley P G,et al.Structural insights into the polymorphism of amyloid-Like fibrils formed by region 20-29 of amylin revealed by solid-state NMR and X-ray fiber diffraction[J].J Am Chem Soc,2008,130(45): 14 990-15 001. [97] Ritter C,Maddelein M L,Siemer A B,et al.Correlation of structural elements and infectivity of the HET-s prion[J].Nature,2005,435(7 043): 844-848. [98] Van Melckebeke H,Wasmer C,Lange A,et al.Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy[J].J Am Chem Soc,2010, 132(39): 13 765-13 775. [99] Wasmer C,Lange A,Van Melckebeke H,et al.Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core[J].Science,2008,319(5 869): 1 523-1 526. [100] loepper K D,Woods W S,Winter K A,et al.Preparation of alpha-synuclein fibrils for solid-state NMR: Expression, purification,and incubation of wild-type and mutant forms [J]. Protein Expression Purif,2006, 48(1): 112-117. [101] Kloepper K D,Hartman K L,Ladror D T,et al.Solid-state NMR spectroscopy reveals that water is nonessential to the core structure of alpha-synuclein fibrils[J].JPhys Chem B, 2007,111(47): 13 353-13 356. [102] Wickner R B,Dyda F,Tycko R.Amyloid of Rnq1p, the basis of the PIN+ prion, has a parallel in-register beta-sheet structure[J].Proc Natl Acad Sci USA,2008,105(7): 2 403-2 408. [103] Ishii Y,Balbach J J,Tycko R.Measurement of dipole-coupled lineshapes in a manyspin system by constant-time two-dimensional solid state NMR with high-speed magic-angle spinning[J].Chem Phys,2001,266(2-3): 231-236. [104] Blanco F J,Tycko R.Determination of polypeptide backbone dihedral angles in solid state NMR by double quantum C-13 chemical shift anisotropy measurements[J].J Magn Reson, 2001,149(1): 131-138. [105] Detken A,Hardy E H,Ernst M,et al.Methods for sequential resonance assignment in solid, uniformly C-13,N-15 labelled peptides: Quantification and application to antamanide[J]. J Biomol NMR,2001,20(3): 203-221. [106] Siemer A B,Ritter C,Ernst M,et al.High-resolution solid-state NMR spectroscopy of the prion protein HET-s in its amyloid conformation[J].Angew Chem Int Edit,2005,44(16): 2 441-2 444. [107] Kupce E,Schmidt P,Rance M,et al. Adiabatic mixing in the liquid state[J].J Magn Reson, 1998,135(2): 361-367. [108] Andersson P,Gsell B,Wipf B,et al.HMQC and HSQC experiments with water flip-back optimized for large proteins[J].J Biomol NMR,1998,11(3): 279-288. [109] Mori S,Abeygunawardana C,Johnson M O,et al.Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC)detection scheme that avoids water saturation[J].J Magn Reson Ser B,1995, 108(1): 94-98. [110] Hardy E H,Detken A,Meier B H.Fast-MAS total throughbond correlation spectroscopy using adiabatic pulses[J].J Magn Reson,2003,165(2): 208-218. [111] Siemer A B,Arnold A A,Ritter C,et al.Observation of highly flexible residues in amyloid fibrils of the HET-s prion[J].J Am Chem Soc,2006,128(40): 13 224-13 228. [112] Yang J,Tasayco M L,Polenova T.Magic angle spinning NMR experiments for structural studies of differentially enriched protein interfaces and protein assemblies[J].J Am Chem Soc,2008,130(17): 5 798-5 807. [113] Nieuwkoop A J,Rienstra C M.Supramolecular protein structure determination by site-specific long-range intermolecular solid state NMR spectroscopy[J].J Am Chem Soc,2010, 132(22): 7 570-7 571. [114] Scheidt H A,Morgado I,Rothemund S,et al.Solid-state NMR spectroscopic investigation of A beta protofibrils: Implication of a beta-sheet remodeling upon maturation into terminal amyloid fibrils[J].Angew Chem Int Edit,2011,50(12): 2 837-2 840. [115] Klein W L,Stine W B,Teplow D B.Small assemblies of unmodified amyloid beta-protein are the proximate neurotoxin in Alzheimer's disease[J].Neurobiol Aging,2004, 25(5): 569-580. [116] Chimon S,Ishii Y.Capturing intermediate structures of Alzheimer's beta-amyloid,A beta(1-40),by solid-state NMR spectroscopy[J].J Am Chem Soc,2005,127(39):13 472-13 473. [117] Chimon S,Shaibat M A,Jones C R,et al.Evidence of fibril-like beta-sheet structures in a neurotoxic amyloid intermediate of Alzheimer's beta-amyloid[J].Nat Struct Mol Biol, 2007,14(12): 1 157-1 164. [118] Benzinger T L S,Gregory D M,Burkoth T S,et al.Propagating structure of Alzheimer's beta-amyloid((10-35)) is parallel betasheet with residues in exact register[J]. Proc Natl Acad Sci USA,1998,95(23): 13 407-13 412. [119] Antzutkin O N,Balbach J J,Leapman R D,et al.Multiple quantum solid-state NMR indicates a parallel,not antiparallel, organization of beta-sheets in Alzheimer's beta-amyloid fibrils[J].Proc Natl Acad Sci USA,2000,97(24): 13 045-13 050. [120] Benzinger T L S,Gregory D M,Burkoth T S,et al.Two-dimensional structure of beta-amyloid(10-35) fibrils[J].Biochem,2000,39(12): 3 491-3 499. [121] Antzutkin O N,Balbach J J,Tycko R.Site-specific identification of non-beta-strand conformations in Alzheimer's beta-amyloid fibrils by solid-state NMR[J].Biophys J,2003, 84(5): 3 326-3 335. [122] Petkova A T,Buntkowsky G,Dyda F,et al.Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide[J].J Mol Biol, 2004,335(1): 247-260. [123] Petkova A T,Leapman R D,Guo Z H,et al.Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils[J].Science,2005,307(5 707): 262-265. [124] Paravastu A K,Petkova A T,Tycko R.Polymorphic fibril formation by residues 10-40 of the Alzheimer's beta-amyloid peptide[J].Biophys J,2006,90(12): 4 618-4 629. [125] Paravastu A K,Leapman R D,Yau W M,et al.Molecular structural basis for polymorphism in Alzheimer's beta-amyloid fibrils[J].Proc Natl Acad Sci USA,2008,105(47): 18 349-18 354. [126] Kodali R,Williams A D,Chemuru S,et al.A beta(1-40) forms five distinct amyloid structures whose beta-sheet contents and fibril stabilities are correlated[J].J Mol Biol, 2010,401(3): 503-517. [127] Harper J D,Lieber C M,Lansbury P T.Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-beta protein[J].Chem Biol, 1997,4(12): 951-959. [128] Goldsbury C S,Wirtz S,Muller S A,et al.Studies on the in vitro assembly of A beta 1-40: Implications for the search for A beta fibril formation inhibitors[J].J Struct Biol, 2000,130(2-3): 217-231. [129] Jimenez J L,Nettleton E J,Bouchard M,et al. The protofilament structure of insulin amyloid fibrils[J].Proc Natl Acad Sci USA,2002,99(14): 9 196-9 201. [130] Hilbich C,Kisterswoike B,Reed J,et al.Aggregation and secondary structure of synthetic amyloid beta-A4 peptides of Alzheimers-disease[J].J Mol Biol,1991,218(1): 149-163. [131] Halverson K,Fraser P E,Kirschner D A,et al.Molecular determinants of amyloid deposition in Alzheimers-disease: Conformational studies of synthetic beta-protein fragments[J].Biochem,1990,29(11): 2 639-2 644. [132] Hilbich C,Kisterswoike B,Reed J,et al.Substitutions of hydrophobic amino-acids reduce the amyloidogenicity of Alzheimer's-disease beta-A4 peptides[J].J Mol Biol,1992, 228(2): 460-473. [133] Harper J D,Wong S S,Lieber C M,et al.Assembly of A beta amyloid protofibrils: An in vitro model for a possible early event in Alzheimer's disease[J].Biochem,1999,38(28): 8 972-8 980. [134] Wu C,Lei H X,Duan Y.Formation of partially ordered oligomers of amyloidogenic hexapeptide (NFGAIL) in aqueous solution observed in molecular dynamics simulations[J]. Biophys J,2004,87(5): 3 000-3 009. [135] Van Melckebeke H,Schanda P,Gath J,et al.Probing water accessibility in HET-s(218-289) amyloid fibrils by solid-state NMR[J].J Mol Biol,2011,405(3): 765-772. [136] Shewmaker F,Kryndushkin D,Chen B,et al.Two prion variants of sup35p have in-register parallel beta-sheet structures,independent of hydration[J].Biochem,2009,48(23): 5 074-5 082. [137] Sciarretta K L,Gordon D J,Petkova A T,et al.A beta 40-Lactam(D23/K28) models a conformation highly favorable for nucleation of amyloid[J].Biochem,2005,44(16): 6 003-6 014. [138] Paparcone R,Pires M A,Buehler M J.Mutations alter the geometry and mechanical properties of Alzheimer's A beta(1-40) amyloid fibrils[J].Biochem,2010,49(41): 8 967-8 977. |
[1] | XU Xiao-jun, WANG Shen-lin. Probing Membrane Protein Interactions by 19F Solid-State NMR [J]. Chinese Journal of Magnetic Resonance, 2019, 36(2): 238-251. |
[2] | RAN Meng-lin, QIN Ling-yun, TANG Chun, DONG Xu. Regulation of Inter-Protein Interactions Between Ubiquitin and Ubiquitin-Associated Domains in Rad23A/Ubiquilin-1 by Phosphorylation [J]. Chinese Journal of Magnetic Resonance, 2019, 36(1): 15-22. |
[3] | GE Yu-wei, LIU Mai-li, GAN Zhe-hong, LI Cong-gang. Measurements of Proton Chemical Shift Anisotropy [J]. Chinese Journal of Magnetic Resonance, 2018, 35(2): 255-267. |
[4] | WANG Dan, LIU Yi-xiang, KOU Xin-hui, LIU Mai-li, JIANG Ling. NMR Studies on Key Residues That Affect Phosphorylation and Dephosphorylation Processes of Bacterial Response Regulator RR468 [J]. Chinese Journal of Magnetic Resonance, 2017, 34(4): 397-407. |
[5] | JIANG Ting-ting, FU Xiao-bin, WU Jin-ze, WANG Jia-chen, YAO Ye-feng, ZHOU Bing. Structure and Dynamics of Polymer-Ceramic Interface in Li1.5Al0.5Ge1.5P3O12/Polyether Solid Electrolyte:A Solid-State NMR Study [J]. Chinese Journal of Magnetic Resonance, 2017, 34(4): 429-438. |
[6] | SUN Yi, CHEN Yan-ke, LI Jian-ping, ZHAO Yong-xiang, YANG Jun. Efficiency of Double Cross Polarization in Magic-Angle Spinning Solid-State NMR Studies on Membrane Proteins [J]. Chinese Journal of Magnetic Resonance, 2017, 34(3): 257-265. |
[7] | CHEN Yan-hua, ZHANG Ze-ting, BAI Jia, LIU Xiao-li, LIU Mai-li, LI Cong-gang. Inhibition Mechanisms of Protein Disulfide Isomerase on α-Synuclein Fibril Aggregation [J]. Chinese Journal of Magnetic Resonance, 2017, 34(2): 131-136. |
[8] | LI Shuang-li, ZHU Qing-jun, LIU Mai-li, YANG Yun-huang. Characteristics of Protein NMR Resonances and Chemical Shift Assignments [J]. Chinese Journal of Magnetic Resonance, 2017, 34(2): 137-147. |
[9] | LI Dong-bei, XU Shuai, YU Zhi-wu. Application of Solid-State NMR to Bone and Bone Biomaterials [J]. Chinese Journal of Magnetic Resonance, 2017, 34(1): 115-129. |
[10] | WANG Hua-pu, ZHU Qin-jun, LIU Mai-li, YANG Yun-huang, YUE Xia-li. Expression,Purification and Characterization of the Zinc-Finger (4-5) Domain in Human Protein INSM1 [J]. Chinese Journal of Magnetic Resonance, 2017, 34(1): 1-7. |
[11] | PENG Yong-jin, SUN Ping-chuan, LI Bao-hui. Dynamic Evolution in PVPh/PEO Blend Studied by Solid-State NMR [J]. Chinese Journal of Magnetic Resonance, 2016, 33(2): 188-197. |
[12] | LI Hua, Yuji O. KAMATARI, Ryo KITAHARA, Kazuyuki AKASAKA. High-Pressure NMR for Studying Protein Structure and Dynamics [J]. Chinese Journal of Magnetic Resonance, 2016, 33(1): 1-26. |
[13] | DAI Chen-ye, ZHANG Ze-ting, LIU Mai-li, LI Cong-gang. Application of NMR in the Studies of Structure and Interactions of α-Synuclein [J]. Chinese Journal of Magnetic Resonance, 2016, 33(1): 153-167. |
[14] | HAN Ming-yue,ZHENG Hui,HU Bing-wen*,YANG Guang*. Compressed Sensing Reconstruction with Iterative Soft Thresholding for Two-Dimensional Solid-State NMR Spectra with Broad Peaks [J]. Chinese Journal of Magnetic Resonance, 2015, 32(4): 551-562. |
[15] | XU Wei-jing,LIU Qing-hua,HU Bing-wen*,CHEN Qun. Structures of Crystalline Poly(ethyl oxide)/LiAsF6 Complexes Determined by Solid-State High-Resolution 13C Nuclear Magnetic Resonance [J]. Chinese Journal of Magnetic Resonance, 2015, 32(3): 399-408. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||