Chinese Journal of Magnetic Resonance ›› 2022, Vol. 39 ›› Issue (3): 278-290.doi: 10.11938/cjmr20212916
• Articles • Previous Articles Next Articles
Di LI1,Lei HUO2,Meng-yun WAN1,Ning-yang JIA2,Li-jia WANG1,*()
Received:
2021-05-22
Online:
2022-09-05
Published:
2021-08-20
Contact:
Li-jia WANG
E-mail:lijiawangmri@163.com
CLC Number:
Di LI, Lei HUO, Meng-yun WAN, Ning-yang JIA, Li-jia WANG. Application of Radiomics Based on New Support Vector Machine in the Classification of Hepatic Nodules[J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 278-290.
Table 2
Extracted radiomics features from hepatic nodules
特征种类(个数) | 特征 |
一阶统计特征(18) | 能量、总能量、熵、最小值、像素10%、像素90%、最大值、均值、中位数、四分位间距、像素范围、平均绝对偏差、鲁棒平均绝对偏差、均方根、偏度、峰度、方差、均匀性 |
形状特征(14) | 网格体积、像素体积、表面积、表面积体积比、球形度、最大3D直径、最大2D直径、最大2D直径列、最大2D直径行、长轴、短轴、最小轴、伸长率、平坦度 |
灰度共生矩阵 (GLCM,24) | 自相关、聚类突出度、聚类阴影、聚类趋势、对比度、相关性、差异均值、差异熵、差异方差、相关均值、相关能量、相关熵、相关性的非正式度量1、相关性的非正式度量2、逆差分矩、归一化逆差分矩、逆差分、归一化逆差分、逆方差、最大相关系数、最大概率、求和平均值、求和熵、求和方差 |
灰度游程长度矩阵 (GLRLM,16) | 灰度不均匀性、归一化灰度不均匀性、灰度方差、强调高灰度运行、强调长期游程、强调长期游程高灰度级别、强调长期游程低灰度级别、强调低灰度游程、强调短期游程、强调短期高灰度级、强调短期低灰度级、游程熵、游程长度非均匀性、标准化游程长度非均匀性、游程百分比、游程方差 |
灰度大小区域矩阵 (GLSZM,16) | 强调小区域、强调大区域、灰度非均匀性、归一化灰度非均匀性、尺寸区域非均匀性、归一化尺寸区域非均匀性、区域百分比、灰度方差、区域方差、区域熵、强调低灰度级区域、强调高灰度级、强调小区域低灰度、强调小区域高灰度、强调大区域低灰度、强调大区域高灰度 |
邻域灰度差分矩阵 (NGTDM,5) | 繁忙度、复杂度、对比度、粗糙度、强度 |
灰度依赖矩阵 (GLDM,14) | 依赖熵、依赖不均匀性、归一化依赖不均匀性、依赖方差、灰度不均匀性、灰度方差、强调大依赖性、强调高灰度级、强调大依赖性高灰度级、强调低灰度级、强调大依赖性低灰度级、强调小依赖性、强调小依赖性高灰度级、强调小依赖性低灰度级 |
高阶统计特征(744) | 小波(LHL、LHH、HLL、LLH、HLH、HHH、HHL、LLL)变换提取特征,指在三个维度中的每一个维度应用高通(H)或低通(L)滤波器的组合变换后,进而提取的一阶统计和纹理特征 |
Table 3
The average classification accuracy (acc) and run time of the 5 algorithms
数据集 | 方法 | ||||
SVM | PSO-SVM | FOA-SVM | F-SVM | LFOA-F-SVM | |
心脏 | 86.77%(0.004 s) | 87.74%(0.0035 s) | 87.41%(0.0047 s) | 88.71%(4.0868 s) | 89.35%(6.9537 s) |
帕金森疾病 | 93.27%(0.0021 s) | 92.74%(0.0022 s) | 93.79%(0.0019 s) | 93.68%(8.5848 s) | 96.32%(5.215 s) |
虹膜 | 96.00%(0.0006 s) | 96.67%(0.0006 s) | 96.67%(0.0005 s) | 98.00%(0.035 s) | 98.67%(0.0237 s) |
葡萄酒 | 96.67%(0.0013 s) | 97.78%(0.0011 s) | 98.33%(0.0019 s) | 98.89%(0.0045 s) | 99.44%(0.0057 s) |
动物园 | 93.64%(0.0015 s) | 91.82%(0.0012 s) | 96.36%(0.0015 s) | 97.27%(0.0395 s) | 99.09%(0.0092 s) |
肝脏结节 | 74.72%(0.0097 s) | 76.11%(0.0092 s) | 76.67%(0.0196 s) | 76.94%(21.5069 s) | 81.00%(14.8110 s) |
Table 4
Classification performance of the 5 algorithms in the testing set of hepatic nodules
SVM | PSO-SVM | FOA-SVM | F-SVM | LFOA-F-SVM | ||
F1 | Precision | 0.72 | 0.79 | 0.82 | 0.69 | 0.81 |
Recall | 0.67 | 0.70 | 0.67 | 0.74 | 0.78 | |
F2 | Precision | 0.63 | 0.72 | 0.71 | 0.68 | 0.77 |
Recall | 0.59 | 0.78 | 0.89 | 0.70 | 0.85 | |
F3 | Precision | 0.80 | 0.87 | 0.87 | 0.78 | 0.88 |
Recall | 0.74 | 0.74 | 0.74 | 0.67 | 0.81 | |
F4 | Precision | 0.86 | 0.86 | 0.83 | 0.79 | 0.89 |
Recall | 0.93 | 0.93 | 0.89 | 0.81 | 0.89 |
1 | 郑荣寿, 孙可欣, 张思维, 等2015年中国恶性肿瘤流行情况分析[J].中华肿瘤杂志,2019,41(1):19-28. |
ZHENG R S, SUN K X, ZHANG S W, et alAnalysis on the prevalence of malignant tumors in China in 2015[J].Chinese Journal of Oncology,2019,41(1):19-28. | |
2 |
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et alRadiomics: extracting more information from medical images using advanced feature analysis[J].Eur J Cancer,2012,48(4):441-446.
doi: 10.1016/j.ejca.2011.11.036 |
3 |
XUE L Y, JIANG Z Y, FU T T, et alTransfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis[J].Eur Radiol,2020,30(5):2973-2983.
doi: 10.1007/s00330-019-06595-w |
4 |
WU J J, LIU A L, CUI J J, et alRadiomics-based classification of hepatocellular carcinoma and hepatic haemangioma on precontrast magnetic resonance images[J].BMC Med Imaging,2019,19(1):23.
doi: 10.1186/s12880-019-0321-9 |
5 | BAEK J, SWANSON T A, TUTHILL T, et al. Support vector machine (SVM) based liver classification: fibrosis, steatosis, and inflammation[C]// International Ultrasonics Symposium. Las Vegas, NV. USA: IEEE, 2020: 1-4. |
6 | ANJU KRISHNA M, EDWIN D, HARIHARAN S. Classification of liver tumor using modified SFTA based multi class support vector machine[C]// International Conference on Current Trends in Computer, Electrical, Electronics and Communication, Mysore, India. USA: IEEE, 2017, 854-859. |
7 |
LI H Z, GUO S, ZHAO H R, et alAnnual electric load forecasting by a least squares support vector machine with a fruit fly optimization algorithm[J].Energies,2012,5(11):4430-4445.
doi: 10.3390/en5114430 |
8 | 苗续芝, 陈伟, 毕方明, 等基于改进FOA-SVM的矿井火灾图像识别[J].计算机工程,2019,45(4):267-274. |
MIAO X Z, CHEN W, BI F M, et allMine fire image recognition based on improved FOA-SVM[J].Computer Engineering,2019,45(4):267-274. | |
9 | CHU D L, HE Q, MAO X HRolling bearing fault diagnosis by a novel fruit fly optimization algorithm optimized support vector machine[J].J Vibroeng,2016,18(1):151-164. |
10 |
VAPNIK V, CHAPELLE OBounds on error expectation for support vector machines[J].Neural Comput,2000,12(9):2013-2036.
doi: 10.1162/089976600300015042 |
11 |
WU X H, ZUO W M, LIN L, et alF-SVM: Combination of feature transformation and SVM learning via convex relaxation[J].IEEE T Neur Net Lear,2018,29(11):5185-5199.
doi: 10.1109/TNNLS.2018.2791507 |
12 | CORTES C, VAPNIK V J M LSupport-vector networks[J].Mach Learn,1995,20(3):273-297. |
13 | 石钰阳, 何平, 刘奕, 等基于PSO-SVM模型的多区域多参数MRI脑胶质瘤MGMT分类[J].科学技术创新,2021,17,15-18. |
SHI Y Y, HE P, LIU Y, et alMulti-region and multi-parameter classification of MRI MGMT gliomas based on PSO-SVM model[J].Scientific and Technological Innovation,2021,17,15-18. | |
14 |
XU Y Y, YIN W TA block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion[J].SIAM J Imaging Sci,2013,6(3):1758-1789.
doi: 10.1137/120887795 |
15 | CHEN H L, YANG B, WANG S J, et alTowards an optimal support vector machine classifier using a parallel particle swarm optimization strategy[J].Appl Math Comput,2014,239,180-197. |
16 |
THARWAT A, HASSANIEN, ABOUL EChaotic antlion algorithm for parameter optimization of support vector machine[J].Appl Intell,2018,48(3):670-686.
doi: 10.1007/s10489-017-0994-0 |
17 | 单黎黎, 张宏军, 王杰, 等一种改进粒子群算法的混合核ε-SVM参数优化及应用[J].计算机应用研究,2013,30(6):1636-1639. |
SHAN L L, ZHANG H J, WANG J, et alParameters optimization and implementation of mixed kernels r epsilon-SVM based on improved PSO algorithm[J].Application Research of Computers,2013,30(6):1636-1639. | |
18 |
PAN W TA new fruit fly optimization algorithm: Taking the financial distress model as an example[J].Knowledge-Based Systems,2012,26,69-74.
doi: 10.1016/j.knosys.2011.07.001 |
19 | 王林, 吕盛祥, 曾宇容果蝇优化算法研究综述[J].控制与决策,2017,32(7):1153-1162. |
WANG L, LV S X, ZENG Y RLiterature survey of fruit fly optimization algorithm[J].Control and Decision,2017,32(7):1153-1162. | |
20 | 张水平, 王丽娜果蝇优化算法的进展研究分析[J].计算机工程与应,2021,57(6):22-29. |
ZHANG S P, WANG L NResearch and analysis on progress of fruit fly optimization algorithm[J].Computer Engineering and Applications,2021,57(6):22-29. | |
21 | YANG X S, SUASH D. Cuckoo search via Lévy flights[C]//2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India. USA: IEEE, 2009: 210-214. |
22 | SHEN L M, CHEN H L, YU Z, et alEvolving support vector machines using fruit fly optimization for medical data classification[J].Knowl-Based Syst,2016,96,61-75. |
23 | GU Q H, CHANG Y X, LI X H, et alA novel F-SVM based on FOA for improving SVM performance[J].Expert Syst Appl,2021,165,113713. |
24 | ZHANG Y H, WEN J H, WANG X B, et alSemi-supervised learning combining co-training with active learning[J].Expert Syst Appl,2014,41(5):2372-2378. |
25 | HARALICK R M, SHANMUGAM K, DINSTEIN ITextural features for image classification[J].IEEE T Syst Man Cy-S,1973,SMC-3(6):610-621. |
26 | GILLIES R, KINAHAN P, HRICAK H J RRadiomics: Images are more than pictures, they are data[J].Radiology,2016,278,563-577. |
27 | ZOU H, HASTIE TRegularization and variable selection via the elastic net[J].J Roy Stat Soc B,2005,67(5):768. |
28 | 魏志宏, 闫士举, 韩宝三, 等基于多输出的3D卷积神经网络诊断阿尔兹海默病[J].波谱学杂志,2021,38(1):92-100. |
WEI Z H, YAN S J, HAN B S, et alDiagnosis of Alzheimer's disease based on multi-output three-dimensional convolutional neural network[J].Chinese J Magn Reson,2021,38(1):92-100. | |
29 | 刘颖, 陈静聪, 胡小洋, 等基于Mask RCNN的桥小脑角区脑膜瘤与听神经瘤分类定位研究[J].波谱学杂志,2021,38(1):58-68. |
LIU Y, CHEN J C, HU X Y, et alClassification and localization of meningioma and acoustic neuroma in cerebellopontine angle based on mask RCNN[J].Chinese J Magn Reson,2021,38(1):58-68. | |
30 | 谭章禄, 陈孝慈改进的分类器分类性能评价指标研究[J].统计与信息论坛,2020,35(9):3-8. |
TAN Z L, CHEN X CStudy on evaluation index of improved classifier classification performance[J].Statistics & Information Foroum,2020,35(9):3-8. | |
31 | 秦锋, 杨波, 程泽凯分类器性能评价标准研究[J].计算机技术与发展,2006,16(10):85-88. |
QIN F, YANG B, CHENG Z KResearch on measure criteria in evaluating classification performance[J].Computer Technology and Development,2006,16(10):85-88. | |
32 | KIM T K, LEE K H, JANG H J, et alAnalysis of gadobenate dimeglumine-enhanced MR findings for characterizing small (1-2-cm) hepatic nodules in patients at high risk for hepatocellular carcinoma[J].Radiology,2011,259(3):730-738. |
[1] | WEI Zhi-hong, YAN Shi-ju, HAN Bao-san, SONG Cheng-li. Diagnosis of Alzheimer's Disease Based on Multi-Output Three-Dimensional Convolutional Neural Network [J]. Chinese Journal of Magnetic Resonance, 2021, 38(1): 92-100. |
[2] | LIU Ying, CHEN Jing-cong, HU Xiao-yang, ZHANG Hao-wei. Classification and Localization of Meningioma and Acoustic Neuroma in Cerebellopontine Angle Based on Mask RCNN [J]. Chinese Journal of Magnetic Resonance, 2021, 38(1): 58-68. |
[3] | LIU Ke-wen, LIU Zi-long, WANG Xiang-yu, CHEN Li, LI Zhao, WU Guang-yao, LIU Chao-yang. Prostate Cancer Diagnosis Based on Cascaded Convolutional Neural Networks [J]. Chinese Journal of Magnetic Resonance, 2020, 37(2): 152-161. |
[4] | SUN Jing-wen, YAN Shi-ju, HAN Yong-sen, SONG Cheng-li. Classifying the Course of Alzheimer's Disease with Brain MR Images and a Method Based on Three-Dimensional Local Pattern Transformation [J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 268-277. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 259
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 209
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||