[1]Craighead K L, Bryant G R. The insignificance of second coordination sphere interactions in cobalt-59 nuclear magnetic resonance relaxation [J]. J Phys Chem, 1975, 79: 1602-1603. [2]Au-Yeung S C F, Eaton D R. The solvent and field-dependence of Co-59 NMR linewidths [J]. J Magn Reson, 1983, 52: 366-373.[3]Chacko V P, Bryant R G. Electric-field gradient modulation and nuclear magnetic-relaxation in hexacyanocobaltate ion [J]. J Magn Reson, 1984, 57: 79-84.[4]Yamasaki A. Cobalt-59 nuclear-magnetic-resonance spectroscopy in coordination chemistry [J]. J Coord Chem, 1991, 24: 211-260.[5]Iida M, Nakamori T, Mizuno Y, Masuda Y. Appreciable effects of ion pairings on the Co-59 electric-field gradient in the NMR relaxation of [Co(CHXN)3]3+[J]. J Phys Chem, 1995, 99: 4347-4352.[6]Kirby C W, Puranda C M, Power W P. Cobalt-59 nuclear magnetic relaxation studies of aqueous octahedral Cobalt (Ⅲ) complexes [J]. J Phys Chem, 1996, 100: 14618-4624.[7]Chen Z Z, AuYeung S C F. The NMR Spectroscopy of Transition Metals [J]. Chinese J Magn Reson, 1995, 12: 525-540.[8]Zhou P, Au-Yeung S C F, Meng Q A. The Second Sphere Interaction in the Supramolecular Complexes Studied by 59Co Solid State NMR [J]. Acta Phys Chim, 1999, 15: 533-540.[9]Gillies D G, Sutcliffe L H, Williams A J. Variable-temperature high-pressure investigation of the cobalt-59 NMR spectroscopy of aqueous K3[Co(CN)6][J]. Magn Reson Chem, 2002, 40: 57-64.[10]Abragam A. Principles of Nuclear Magnetism [M]. Clarendon Press: Oxford, 1961.[11]Zhou P, Au-Yeung S C F, Xu X P. A DFT and Co-59 solid-state NMR study of the second-sphere interaction in polyammonium macrocycles cobalt cyanide supercomplexes [J]. J Am Chem Soc, 1999, 121: 1030-1036.[12]Lucken E A C. see Spectroscopic and Computational Studies of Supramolecular Systems [M]. Davies, J E E. (ed), Boston: Kluwer Academic Publishers, 1992.[13]Homans S W. A Dictionary of Concepts in NMR [M]. Clarendon Press: Oxford, 1989.[14]Taube H, Posey F A. The study of a system involving equilibrium between inner sphere and outer sphere complex ions: Co(NH3)5H2O+++ and SO=4 [J]. J. Am. Chem. Soc, 1953, 75: 1463-1467.[15]Yamasaki A, Yajima F, Fujiwara F. Nuclear magnetic resonance studies on cobalt complexes. I. Cobalt-59 nuclear magnetic resonance spectra of cobalt (Ⅲ) complexes [J]. Inorg Chim Acta, 1968, 2: 39-42.[16]Au-Yeung S C F, Eaton D R. A model for estimating Co-59 NMR chemical shifts and line widths and its application to cobalt dioxygen complexes [J]. Can J Chem, 1983, 61: 2431-2441.[17]Russell J G, Bryant R G. Nuclear magnetic-relaxation in symmetrical cobalt complexes-ion-pairing effects [J]. J Phys Chem, 1984, 88: 4298-4302.[18]Shaw D. Fourier Transform NMR Spectroscopy (2nd ed) [M]. New York: Elsevier Press, 1984.[19]Kidd R G, Goodfellow R J. In NMR and The Periodic Table, Harris, B K, Mann, B E (eds), New York: Academic Press, 1978, Chapter. 8.[20]Gierer A, Wirtz K. Molecular theory of microfriction [J]. Z Naturforsch, 1953, 8a: 532-538.[21]Bencini A, Bianchi A, Garcia-Espa[AKn~]a E, et al. Anion coordination chemistry. 2. Electrochemical, thermodynamic, and structural studies on supercomplex formation between large polyammonium cycloalkanes and the 2 complex anions hexacyanoferrate (Ⅱ) and hexacyanocobaltate (Ⅲ) [J]. Inorg Chem, 1987, 26: 3902-3907.[22]The elemental analysis results: [12]aneN4[Co(CN)6], formula: C8H20N4H3[Co(CN)6].2H2O, found: C 39.29 %, H 6.34 %, N 32.74 %, calc.: C 39.41 %, H 6.40 %, N 32.86 %; [18]aneN6[Co(CN)6], formula: C12H30N6H2K[Co(CN)6].4H2O, found: C 37.06 %, H 6.83 %, N 29.05 %, calc: C 36.85%, H 6.87%, N 28.65%; [24]aneN8[Co(CN)6], formula, C16H40N8H6K2 [Co(CN)6]2Cl2.6H2O, found, C 32.22 %, H 5.71 %, N 27.25 %, calc. C 32.59 %, H 5.65 %, N 27.15 %; [16]aneN4[Co(CN)6], formula, C12H28N4H2K[Co(CN)6], found, C 44.33 %, H 6.12 %, N 29.07 %, calc. C 44.63 %, H 6.20 %, N 28.93 %; [24]aneN6[Co(CN)6], formula, C18H42N6H6[Co(CN)6]2.5.5H2O, found, C 41.23 %, H 6.64 %, N 28.42 %, calc. C 41.05 %, H 6.72 %, N 28.73 %; [32]aneN8[Co(CN)6], formula, C24H56N8H8[Co(CN)6]2Cl2.6H2O, found, C 40.26 %, H 7.08 %, N 26.10 %, calc. C 40.11 %, H 7.05 %, N 26.10%.[23]Zhou P, Xue F, Au-Yeung S C F, et al. Crystal structures of [18]aneN6H2K[Co(CN)6].4H2O, [16]aneN4H2K[Co(CN)6]and [12]aneN4H3[Co(CN)6].2H2O. Insight into the electrostatic and hydrogen-bonding interaction in self-assembling supercomplexes[J]. Acta Cryst B, 1999, 55: 389-395.[24]Zhou P, Xue F, Au-Yeung S C F. Potassium hexacyanocobaltate, a redetermination [J]. Acta Cryst C, 1998, 54: IUC9800062.[25]Chu B. Laser Light Scattering: Basic Principles and Practice[J]. Academic Press: London, 1991.[26]Provencher S W. Inverse problems in polymer characterization: direct analysis of polydispersity with photon correlation spectroscopy [J]. Makromol Chem, 1979, 180: 201-209.[27]Stockmayer W H, Schmidt M. Quasi-elastic light-scattering by semiflexible chains [J]. Macromolecules, 1984, 17: 509-514.[28]Weast R C. Handboonk of Chemistry and Physics [M]. Floride: 67rd Edition,CRC Press, 1986-1987.[29]Wu C, Chan K K, Xia K Q. Experimental study of the spectral distribution of the light scattered from flexible macromolecules in very dilute solution [J]. Macromolecules, 1995, 28: 1032-1037.[30]Compared with 0.35 MHz (ref.7), the effective quadrupolar coupling constant, (e2qQ/h)’, 0.5 MHz is more reliable because Kirby C. W. et al. (ref. 7) used an estimated correlation time 168 ps in the calculation.[31]Hertz H G. see Water, A Comprehensive Treatise [M]. New York: Franks, F. (ed), Plenum Press, 1973, Chapter 7.[32]Chan C C, Au-Yeung S C F. Interpretation of Co-59 NMR shielding using the hard and soft acid-base concept-Insight into the relative magnitude of the nephelauxetic and the spectrochemical effect [J]. J Chem Soc, Faraday Trans, 1996, 92: 1121-1128. |