[1] Zhang Ben-yin(张本印), Wang Huan(王环), Luo Xiao-dong(罗晓东), et al. 2D NMR assignments of an ent-pimarane diterpenoid from euphorbia yinshanica(阴山大戟中一个对映海松烷型二萜2D NMR全归属)[J]. Chinese J Magn Reson(波谱学杂志) , 2012, 29(1): 112-118.[2] Zhu Chuan-jun(朱传钧), Cui Yu-xin(崔育新), Jiang Biao(姜标). A method for improving the resolution of two-dimensional NMR spectrum by overlapping HSQC and 1H, 13C COSY(通过HSQC和1H, 13C COSY叠合增强二维谱分辨率的方法)[J]. Chinese J Magn Reson(波谱学杂志), 2013, 30(1): 86-92.[3] Qu X B, Guo D, Cao X, et al. Reconstruction of self-sparse 2D NMR spectra from under-sampled data in indirect dimension[J]. Sensors, 2011, 11(9): 8 888-8 909.[4] Bretthorst G L. Nonuniform sampling: bandwidth and aliasing[J]. Concept Magn Reson Part A, 2008, 32(6): 417-435.[5] Maciejewski M W, Qui H Z, Rujan I, et al. Nonuniform sampling and spectral aliasing[J]. J Magn Reson, 2009, 199(1): 88-93.[6] Donoho D L. Compressed sensing[J]. IEEE T Inform Theory, 2006, 52(4): 1 289-1 306.[7] Candès E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE T Inform Theory, 2006, 52(2): 489-509.[8] Candès E. Compressive sampling∥Proceedings of the international Congress of Mathematicians Madrid, Spain: European[C]. Mathematical Society Publishing House, 2006. 1 433-1 452.[9] Candès E, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies[J]. IEEE T Inform Theory, 2006, 52(12): 5 406-5 425.[10] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM J Sci Comput, 1999, 20(1): 33-61.[11] Donoho D L. For most large under-determined systems of linear equations the minimal l1-norm solution is also the sparsest solution[J]. Commun Pur Appl Math, 2006, 59(6): 797-829.[12] Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS, a re-weighted minimum norm algorithm[J]. IEEE T Signal Proces, 1997, 45(3): 600-616.[13] Candes E J, Wakin M B, Boyd S. Enhancing sparsity by re-weighted l 1 minimization[J]. J Fourier Anal Appl, 2008, 14(5): 877-905.[14] Chartrand R. Exact reconstruction of sparse signals via non-convex minimization[J]. IEEE Signal Proc Lett, 2007, 14(10): 707-710.[15] Saab R, McKeown M J, Abugharbieh R. Under-determined anechoic blind source separation via lq basis-pursuit with q<1[J]. IEEE T Signal Proces, 2007, 55(8): 4 004-4 016.[16] Mohimani H, Babie-Zadeh M, Jutten C. A fast approach for over-complete sparse decomposition based on smoothed l0 norm[J]. IEEE T Signal Proces, 2009, 57(1): 289-301.[17] Qu X B, Cao X, Guo D, et al. Compressed sensing MRI with combined sparsifying transforms and smoothed l0 norm minimization∥Proc of the 35th International Conference on Acoustics, Speech, and Signal Processing[C]. Texas: Dallas, 2010.[18] Cui Zhi-fu(崔志富), Zhang Hang(张杭), Lu Wei(路威). Subspace iterative algorithm for sparse decomposition based on improved smoothed l0 norm(基于近似零范数的子空间迭代稀疏分解算法)[J]. Journal of PLA University of Science and Technology(Natural Science Edition)(解放军理工大学学报自然版), 2011, 12(5): 409-413.[19] Boyd S, Vandenberghe L. Convex Optimization[M]. Cambridge:Cambridge University Press, 2004.[20] Pant J K, Lu W S, Antoniou A. Reconstruction of sparse signals by minimizing are-weighted approximate l0 norm in the null space of the measurement matrix∥Process of the 53rd IEEE International Midwest Symposium on Circuits Systems[C]. Seattle: Circuits and Systems (MWSCAS), 2010. [21] Trzasko J D, Manduca A. A highly under-sampled magnetic resonance image reconstruction via homotopic l0 minimization[J]. IEEE T Med Imaging, 2009, 1(28): 106-121.[22] Blake A, Zisserman A. Visual Reconstruction[M]. Massachusetts: MIT Press, 1987.[23] Chartrand R, Yin W. Iteratively re-weighted algorithms for compressive sensing∥Process of the IEEE International Conference on Acoustics Speech Signal Process[C]. Las Vegas: ICASSP, 2008.[24] Boufounos P, Duarte M, Baraniuk R. Sparse signal reconstruction from noisy compressive measurements using cross validation∥Proc of the IEEE Workshop on Statistical Signal Processing[C]. Washington: IEEE Computer Society, 2007.[25] Brandwood D H. A complex gradient operator and its application in adaptive array theory[J]. IEE Proc F, Radar Signal Process, 1983, 130(1): 11-16. |