[1] Kung Y, Drennan C L. A role for nickel-iron cofactors in biological carbon monoxide and carbon dioxide utilization[J]. Curr Opin Chem Biol, 2011, 15(2): 276-283.
[2] Liu Y, Zhu X, Wang F, et al. Probing the role of the bridging C509 between the[Fe4S4] cubane and the [NipNid] centre in the A-cluster of acetyl-coenzyme A synthase[J]. Chem Commun, 2011, 47(4): 1 291-1 293.
[3] Liu Y, Wang F, Li P, et al. Insights into the mechanistic role of the [Fe4S4] cubane in the A‐Cluster [Fe4S4]‐(SR)‐[NipNid]} of acetyl‐coenzyme A synthase[J]. ChemBioChem, 2011, 12(9): 1 417-1 421.
[4] Zhu X F, Tan X S. Metalloproteins/metalloenzymes for the synthesis of acetyl-CoA in the Wood-Ljungdahl pathway[J]. Science In China Series B-Chemistry, 2009, 52(12): 2 071-2 082.
[5] Ragsdale S W. Nickel and the carbon cycle[J]. J Inorg Biochem, 2007, 101: 1 657-1 666.
[6] Ragsdale S W. Metals and their scaffolds to promote difficult enzymatic reactions[J]. Chem Rev, 2006, 106(8): 3 317-3 337.
[7] Darnault C, Volbeda A, Kim E J, et al. Ni-Zn-[Fe4S4] and Ni-Ni-[Fe4S4] clusters in closed and open subunits of acetyl-CoA ynthase/carbon monoxide dehydrogenase[J]. Nat Struct Biol, 2003, 10(4): 271-279.
[8] Bartholomew G W, Alexander M. Microbial metabolism of carbon monoxide in culture and in soil[J]. App Environ Microb, 1979, 37(5): 932-937.
[9] Drake H L. Acetogenesis, Acetogenic Bacteria, and the Acetyl-CoA “Wood/Ljungdahl” Pathway: Past and Current Perspectives[M]. Chapman & Hall, New York: 1994. 3-60.
[10] Thauer R K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson[J]. Microbiology, 1998, 144(9): 2 377-2 406.
[11] Grahame D A. Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenasecorrinoid enzyme complex[J]. J Biol Chem, 1991, 266(33): 22 227.
[12] Doukov T I, Blasiak L C, Seravalli J, et al. Xenon in and at the end of the tunnel of bifunctional carbon monoxide dehydrogenase/acetylCoA synthase[J]. Biochemistry, 2008, 47(11): 3 474-3 483.
[13 Doukov T I, Iverson T M, Seravalli J, et al. A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase[J]. Science, 2002, 298(5 593): 567-572.
[14] Lindahl P A, Ragsdale S W, Munck E. Mossauer study of CO dehydrogenase from Clostraidium.Thermoaceticum[J]. J Biol Chem, 1990, 265(7): 3 880-3 888.
[15] Lindahl P A, Munck E, Ragsdale S W. CO dehydrogenase from Clostridium.thermoaceticum - EPR and eclectrochemical studies in CO2 and argon atomspheres[J]. J Biol Chem, 1990, 265(7): 3 873-3 879.
[16] Lindahl P A. The Ni-containing carbon monoxide dehydrogenase family: Light at the end of the tunnel?[J]. Biochemistry, 2002, 41(7): 2 097-2 105.
[17] Drennan C L, Heo J Y, Sintchak M D, et al. Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(21): 11 973-11 978.
[18] Dobbek H, Svetlitchnyi V, Liss J, et al. Carbon monoxide induced decomposition of the active site [Ni4Fe5S] cluster of CO dehydrogenase[J]. J Am Chem Soc, 2004, 126(17): 5 382-5 387.
[19] Feng J, Lindahl P A. Effect of sodium sulfide on Ni-containing carbon monoxide dehydrogenases[J]. J Am Chem Soc, 2004, 126(29): 9 094-9 100.
[20] Fraser D M, Lindahl P A. Evidence for a proposed intermediate redox state in the CO/CO2 active site of acetyl-CoA synthase (carbon monoxide dehydrogenase) from clostridium thermoaceticum[J]. Biochemistry, 1999, 38(48): 15 706-15 711.
[21] Anderson M E, Lindahl P A. Spectroscopic states of the CO oxidation/CO2 reduction active site of carbon monoxide dehydrogenase and mechanistic implications[J]. Biochemistry, 1996, 35(25): 8 371-8 380.
[22] Hu Z G, Spangler N J, Anderson M E, et al. Nature of the C-cluster in Ni-containing carbon monoxide dehydrogenases[J]. J Am Chem Soc, 1996, 118(4): 830-845.
[23] Spangler N J, Meyers M R, Gierke K L, et al. Substitution of valine for histidine 265 in carbon monoxide dehydrogenase from Rhodospirillum rubrum affects activity and spectroscopic states[J]. J Biol Chem, 1998, 273(7): 4 059-4 064.
[24] Kung Y, Doukov T I, Seravalli J, et al. Crystallographic snapshots of cyanide-and water-bound C-clusters from bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase[J]. Biochemistry, 2009, 48(31): 7 432-7 440.
[25] Gong W, Hao B, Wei Z, et al. Structure of the Ni-dependent CO dehydrogenase component of the Methanosarcina barkeri acetyl-CoA decarbonylase/synthase complex[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(28): 9 558-9 563.
[26] Jeoung J H, Dobbek H. Carbon dioxide activation at the Ni, Fe-cluster of anaerobic carbon monoxide dehydrogenase[J]. Science, 2007, 318: 1 461-1 464.
[27] Seravalli J, Kumar M, Lu W P, et al. Mechanism of CO oxidation by carbon monoxide dehydrogenase from Clostridium.thermoaceticum and its inhibition by anions[J]. Biochemistry, 1995, 34(24): 7 879-7 888.
[28] Ito M, Kotera M, Matsumoto T, et al. Dinuclear nickel complexes modeling the structure and function of the acetyl CoA synthase active site[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(29): 11 862-11 866.
[29] Ariyananda P, Kieber-Emmons M T, Yap G, et al. Synthetic analogs for evaluating the influence of N-H center dot center dot center dot S hydrogen bonds on the formation of thioester in acetyl coenzyme a synthase[J]. Dalton Transactions, 2009, 22: 4 359-4 369.
[30] Amara P, Volbeda A, Fontecilla-Camps J C, et al. A quantum chemical study of the reaction mechanism of acetyl-coenzyme A synthase\
[J]. J Am Chem Soc, 2005, 127(8): 2 776-2 784.
[31] Schenker R P, Brunold T C. Computational studies on the A cluster of acetyl-coenzyme A synthase: geometric and electronic properties of the NiFeC species and mechanistic implications[J]. J Am Chem Soc, 2003, 125(46): 13 962-13 963.
[32] Loke H K, Bennett G N, Lindahl P A. Active acetyl-CoA synthase from Clostridium thermoaceticum obtained by cloning and heterologous expression of acsAB in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(23): 12 530-12 535.
[33] Ragsdale S W, Kumar M. Nickel-containing carbon monoxide dehydrogenase/acetyl-CoA synthase[J]. Chem Rev, 1996, 96(7): 2 515-2 539.
[34] Tan X, Martinho M, Stubna A, et al. Mossbauer evidence for an exchange-coupled {[Fe4S4]1+ Nip1+} A-cluster in isolated alpha subunits of acetyl-coenzyme A synthase/carbon monoxide dehydrogenase[J]. J Am Chem Soc, 2008, 130(21): 6 712-6 713.
[35] Bender G, Stich T A, Yan L, et al. Infrared and EPR spectroscopic characterization of a Ni (I) species formed by photolysis of a catalytically competent Ni (I)-CO intermediate in the acetyl-CoA synthase reaction[J]. Biochemistry, 2010, 49(35): 7 516-7 523 |