[1] Dingley A J, Grzesiek S. Direrct observation of hydrogen bonds in nucleic acid base pairs by internucleotide 2JNN couplings[J]. J Am Chem Soc, 1998, 120: 8293-8297.[2] Pervushin K, Ono A, Fernandez C, et al. NMR scalar couplings across Watson-Crick base pair hydrogen bonds in DNA observed by transverse relaxation-optimized spectroscopy[J]. Proc Natl Acad Sci USA, 1998, 95:14147-14151.[3] Liu A, Majumdar A, Hu W, et al. NMR detection of N-H…O=C hydrogen bonds in 13C, 15N-labeled nucleic acids[J]. J Am Chem Soc, 2000, 122:3206-3210.[4] Reid D R, Wemmer D E, Chou S H, et al. Assignment of the non-exchangeable proton resonances of d(CGCGAATTCGCG) using two-dimensional nuclear magnetic resonance methods[J]. J Mol Biol, 1983, 171:319-336.[5] W[AKu¨D]thrich K. NMR of proteins and nucleic acids[M]. New York: Wiley Interscience, 1986.[6] Schmitz U, James T L. How to generate accurate solution structures of double-helical nucleic acid fragments using nuclear magnetic resonance and restrained molecular dynamics, in Methods in Enzymology: Nuclear Magnetic Resonance and Nucleic Acids[M]. ed. James TL, Vol 261, San Diego: Academic Press, 1995.[7] Lam S L, Ip L N. Low temperature solution structures and base pair stacking of double helical d(CGTACG)2[J]. J Biomol Struct Dyn, 2002, 19:907-917. NMR chemical shifts were reported on website: www.bmrb.wisc.edu. [8] Varani G, Aboulela F, Allain F H T. NMR investigation of RNA structure[J]. Prog NMR Spectr, 1996, 29: 51-127.[9] Borgias B A, James T L. Mardigras-a procedure for matrix analysis of relaxation for discerning geometry of an aqueous structure[J]. J Magn Reson, 1990, 87:475-487.[10] Markley J L, Bax A, Arata Y, et al. Recommendations for the presentation of NMR structures of proteins and nucleic acids[J]. Pure Appl Chem, 1998, 70: 117-142; J Biomol NMR, 1998, 12: 1-23. [11] Pearlman D A, Case D A, Caldwell J C, et al. AMBER (UCSF), Version 4.0, San Francisco: University of San Francisco, 1990.[12] Bruenger A T. X-PLOR, version 3.1: A system for X-ray crystallography and NMR[M]. New Haven: Yale University Press, CT, 1992.[13] Brunger A T, Adams P D, Clore G M, et al. Crystallography & NMR system: a new software suite for macromolecular structure determination[J]. Acta Cryst Sec D-Biol Cryst, 1998, 54: 905-921.[14] Lavery R, Sklenar H. Curves[M]. Paris: Institute de Biologis Physico-Chimique, 1992. [15] Dickerson R E, et al. Definition and nomenclature of nucleic acid structure parameters[J]. EMBO J, 1989, 8:1-44.[16] Schmitz U, Ulyanov N B, Kumar A, et al. Molecular dynamics with weighted time-averaged restraints for a DNA octamer, dynamic interpretation of nuclear magnetic resonance data[J]. J Mol Biol, 1993, 234:373-389.[17] Borden K L B, Jenkins T C, Skelly J V, et al. Conformational properties of the G.G mismatch in d(CGCGAATTGGCG)2 determined by NMR[J]. Biochemistry, 1992, 31:5411-5422. [18] Hirao I, Kawai G, Yoshizawa S, et al. Most compact hairpin-turn structure exerted by a short DNA fragment, d(GCGAAGC) in solution: an extraordinarily stable structure resistant to nucleases and heat[J]. Nucleic Acids Res, 1994, 22:576-582.[19] Ulyanov N B, Bauer W R, James T L. High resolution NMR structure of an AT-rich DNA sequence[J]. J Biomol NMR, 2002, 22:265-280.[20] Feigon J, Koshlap K M, Smith F W. 1H NMR spectroscopy of DNA triplexes and quadruplexes, in Methods in Enzymology: Nuclear Magnetic Resonance and Nucleic Acids[M]. ed. James T L, Vol 261, San Diego: Academic Press, 1995.[21] Wang K Y, Krawzsyk S H, Bischofberger N, et al. The tertiary structure of a DNA aptamer which binds to and inhibits thrombin determines activity[J]. Biochem, 1993, 32: 11285-11292. [22] Searle M S. NMR-studies of drug-DNA interactions[J]. Prog NMR Spectr, 1993, 25: 403-480. [23] Marzilli L G, Saad J S, Kuklenyik Z, et al. Relationship of solution and protein-bond structures of DNA duplexes with the major intrastrand cross link lesions formed on cisplatin binding to DNA[J]. J Am Chem Soc, 2001, 123: 2764-2770. [24] Giessner-Prettre C, Pullman B. Quantum mechanical calculations of NMR chemical shifts in nucleic acids[J]. Q Rev Biophys,1987, 20: 113-172. [25] Wijmenga S S, Kruithof M, Hilbers C W. Analysis of H-1 chemical shifts in DNA: Assesment of the reliability of H-1 chemical shift calculations for use in structure refinement[J]. J Biomol NMR, 1997, 10: 337-350. [26] Case D A. calibration of ring-current effects in proteins and nucleic acids[J]. J Biomol NMR, 1995, 6: 341-346. [27] Gueron M, Leroy J L. Study of base-pair kinetics by NMR measurement of proton exchange. in Methods in Enzymology: Nuclear Magnetic Resonance and Nucleic Acids[M]. ed. James T L, Vol 261, San Diego: Academic Press, 1995.[28] Lipari G, Szabo A. Modelfree approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity[J]. J Am Chem Soc, 1982, 104: 4546-4559.[29] Lipari G, Szabo A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results[J]. J Am Chem Soc, 1982, 104: 4559-4570.[30] Kay L E, Torchia D A, Bax A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease[J]. Biochem, 1989, 28: 8972-8979.[31] Kojima C, Ono A, Kainosho M, et al. DNA duplex dynamics: NMR relaxation studies of a decamer with uniformly 13C labeled purine nucleotides[J]. J Magn Reson, 1998, 135: 310-333.[32] Spielmann H P. Dynamics in psoralen-damaged DNA by 1H detected natural abundance 13C NMR spectroscopy[J]. Biochem. 1998, 37: 5426-5438.[33] Eimrt W, Williamson J R, Boxer S G, et al. Characterization of the overall and internal dynamics of short oligonucleotides by depolarized dynamic lightscattering and NMR relaxation measurements[J]. Biochem, 1990, 29: 799-811.[34] Clore G M, Szabo A, Bax A, et al. Deviatin from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic resonance of proteins[J]. J Am Chem Soc, 1990, 112: 4989-4991. |