[1] Beckonert O, Coen M, Keun H C, et al. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues[J]. Nat Protoc, 2010, 5(6): 1 019-1 032.
[2] Hou G J, Ding S W, Zhang L M, et al. Breaking the T1 constraint for quantitative measurement in magic angle spinning solid-state NMR spectroscopy[J]. J Am Chem Soc, 2010, 132(16): 5 538-5 539.
[3] Liao P Q, Wu H F, Zhang X Y, et al. Comparative investigation on acute biological effect of lanthanum and cerium by MAS 1H NMRbased metabonomic approach[J]. Chem J Chinese U, 2006, 27(8): 1 448-1 452.
[4] Jeener J. Ampere international summer school[R]. Basko Polje, Yugoslavia, 1971.
[5] Bottomley P A. Selective volume method for performing localized NMR spectroscopy: US, 4480228[P]. 1984-10-30.
[6] Frahm J, Merboldt K D, Hanicke W. Localized proton spectroscopy using stimulated echoes[J]. J Magn Reson, 1987, 72(3): 502-508.
[7] Thomas M A, Yue K, Binesh N, et al. Localized two-dimensional shift correlated MR spectroscopy of human brain[J]. Magn Reson Med, 2001, 46: 58-67.
[8] Braakman N, Oerther T, de Groot H J, et al. High resolution localized two-dimensional MR spectroscopy in mouse brain in vivo[J]. Magn Reson Med, 2008, 60: 449-456.
[9] Remy C, Arus C, Ziegler A, et al. In vivo, ex vivo, and in vitro one and two-dimensional nuclear magnetic resonance spectroscopy of an intracerebral glioma in rat brain: assignment of resonances[J]. J Neurochem, 1994, 62: 166-179.
[10] Hurd R E, Gurr D, Sailasuta N. Proton spectroscopy without water suppression: the over sampled J-resolved experiment[J]. Magn Reson Med, 1998, 40: 343-347.
[11] Yong K, Chris C S, Leanne E, et al. Frontal lobe GABA levels in cocaine dependence: a two-dimensional, J-resolved magnetic resonance spectroscopy study[J]. Psychiat Res-Neuroim, 2004, 130: 283-293.
[12] GuoYu-bo(郭育波), Qiu Qing-chun(邱庆春), Chen Yao-wen(陈耀文), et al. Progress of using 2D MRS to investigate the absolute concentration of brain GABA (2D MRS 技术在脑内 GABA 浓度的定量检测的研究进展)[J]. Chinese J Med Phys(中国医学物理学杂志), 2008, 25: 832-837.
[13] Chen Yao-wen(陈耀文), Shen Zhi-wei(沈智威), Su Ji-wei(宿吉伟), et al. Quantitative measurement of γ-aminobutyric acid concentration in vivo by magnetic resonance spectroscopy(MRS 定量检测活体γ-氨基丁酸浓度的研究现状) [J]. Chinese J Magn Reson(波谱学杂志), 2006, 23(3): 409-417.
[14] Yue K, Marumoto A, Binesh N, et al. 2D J-PRESS of human prostates using an endorectal receiver coil [J]. Magn Reson Med, 2002, 47(6): 1 059-1 064.
[15] Lange T, Trabesinger A H, Schulte R F, et al. Prostate spectroscopy at 3 Tesla using two-dimensional S-PRESS[J]. Magn Reson Med, 2006, 56: 1 220-1 226.
[16] Bax A, Freeman R. Investigation of complex networks of spin-spin coupling by two-dimensional NMR[J]. J Magn Reson, 1981, 44: 542-561.
[17] Girvin M E. Increased sensitivity of COSY spectra by use of constant-time t1 periods (CT COSY)[J]. J Magn Reson A, 1994, 108: 99-102.
[18] Velan S S, Ramamurthy S, Ainala S, et al. Implementation and validation of localized constant-time correlated spectroscopy (LCTCOSY) on a clinical 3T MRI scanner for investigation of muscle metabolism[J]. J Magn Reson Imaging, 2007, 26(2): 410-417.
[19] Dreher W, Leibfritz D. Detection of homonuclear decoupled in vivo proton NMR sprctra using constant time chemical shift encoding: CT-PRESS[J]. Magn Reson Imaging, 1999, 17: 141-150.
[20] Wang Z Y J, Bergqvist C, Hunter J V. In vivo measurement of brain metabolites using two-dimensional double-quantum MR spectroscopy-exploration of GABA levels in a ketogenic diet[J]. Magn Reson Med, 2003, 49: 615-619.
[21] Thomas M A, Chung H K, Middlekauff H. Localized two-dimensional 1H magnetic resonance exchange spectroscopy: a preliminary evaluationin human muscle[J]. Magn Reson Med, 2005, 53: 495-502.
[22] Ovidiu C A, Saadallah R, Carolyn E M, et al. Low-power adiabatic sequences for in vivo localized two-dimensional chemical shift correlated MR spectroscopy [J]. Magn Reson Med, 2010, 64: 1 542-1 556.
[23] Andronesi O C, Ramadan S, Ratai E M, et al. Spectroscopic imaging with improved constant adiabaticity gradient modulated pulses on high-field clinical scanners[J]. J Magn Reson, 2010, 203: 283-293.
\
[24\]〖KG*2〗Garwood M, DelaBarre L. The return of the frequency sweep: designing adiabatic pulses for contemporary NMR[J]. J Magn Reson, 2001, 213: 155-177.
[25] Rance M. Improved techniques for homonuclear rotating-frame and isotropic mixing expriments[J]. J Magn Reson, 1987, 74: 557-564.
[26] Warren WS, Ahn S, Mescher M, et al. MR imaging contrast enhancement based on intermolecular zero quantum coherences[J]. Science, 1998, 281: 247-251.
[27] Rizi R R, Ahn S, Alsop D C, -et al. Intermolecular zero-quantum coherence imaging of the human brain[J]. Magn Reson Med, 2000, 43: 627-632.
[28] Zhong J H, Chen Z, Kwok E. In vivo intermolecular double-quantum imaging on a clinical 1.5 T MR scanner[J]. Magn Reson Med, 2000, 43: 335-341.
[29] Zhong J H, Kwok E, Chen Z. fMRI of auditory stimulation with intermolecular double-quantum coherences (iDQCs) at 1.5 T[J]. Magn Reson Med, 2001, 45: 356-364.
[30] Zheng B W, Hwang D W, Chen Z, et al. Rotating-frame intermolecular double-quantum spin-lattice relaxation T1ρ, DQC-weighted magnetic resonance imaging[J]. Magn Reson Med, 2005, 53: 9300936.
[31] Zheng B W, Chen Z, Kennedy S D, et al. IDQC MRI weighted by longitudinal relaxation in the rotating frame[J]. Magn Reson Med, 2006, 56(2): 327-333.
[32] Balla D Z, Faber C. In vivo intermolecular zero-quantum coherence MR spectroscopy in the rat spinal cord at 17.6 T: a feasibility study[J]. Magn Reson Mater Phys Biol Med, 2007, 20: 183-191.
[33] Chen X, Lin M J, Chen Z, et al. Fast acquisition scheme for achieving high-resolution MRS with J-scaling under inhomogeneous fields[J]. Magn Reson Med, 2009, 61: 775-784.
[34] Lin Y Q, Gu T L, Chen Z, et al. High-resolution MRS in the presence of field inhomogeneity via intermoleculardouble-quantum coherences on a 3 T wholebody scanner[J]. Magn Reson Med, 2010, 63: 303-311.
[35] Chen Z, Cai S H, Chen Z W, et al. Fast acquisition of high-resolution NMR spectra in inhomogeneous fields via intermolecular double-quantum coherences[J]. J Chem Phys, 2009, 130: 084504.
[36] Meric P, Autret G, Doan B T, et al. In vivo 2D magnetic resonance spectroscopy of small animals[J]. Magn Reson Mat Phys Biol Med, 2004, 17(3-6): 317-338.
[37] Banakar S, Thomas M A, Deveikis A, et al. Two-dimensional 1H MR spectroscopy of the brain in human immunodeficiency virus (HIV)-infected children[J]. J Magn Reson Imaging, 2008, 27: 710-717.
[38] Singhal A, Nagarajan R, Hinkin C H, et al. Two-dimensional MR spectroscopy of minimal hepatic encephalopathy and neuropsychological correlates in vivo[J]. J Magn Reson, 2010, 32(1): 35-43.
[39] Welch J W R, Bhakoo K, Dixon R M, et al. In vivo monitoring of rat brain metabolites during vigabatrin treatment using localized 2DCOSY[J]. NMR Biomed, 2003, 16: 47-54.
[40] Binesh N, Kumar A, Hwang S, et al. Neurochemistry of late-life major depression: a pilot two-dimensional MR spectroscopic study[J]. J Magn Reson Imaging, 2004, 20(6): 1 039-1 045.
[41] Jensen J E, Frederick B D, Wang L Q, et al. Two-dimensional, J-resolved spectroscopic imaging of GABA at 4 Tesla in the human brain[J]. Magn Reson Med, 2005, 54(4): 783-788.
[42] Watanabe H, Takaya N, Mitsumori F. Simultaneous observation of glutamate, γ-aminobutyric acid, and glutamine in human brain at 4.7 T using localized twodimensional constant-time correlation spectroscopy[J]. NMR Biomed, 2008, 21: 518-526.
[43] Ramadan S, Ratai E M, Wald L L, et al. In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7 T[J]. J Magn Reson, 2010, 204: 91-98.
[44] Jeener J, Meier B H, Bachmann P, et al. Investigation of exchange processes by two-dimensional NMR spectroscopy [J]. J Chem Phys, 1979, 71: 4 546-4 553.
[45] Lipnick S, Verma G, Ramadan S, et al. Echo planar correlated spectroscopic imaging: implementation and pilot evaluation in human calf in vivo [J]. Magn Reson Med, 2010, 64(4): 947-956.
[46] Rajakumar N, Ana M G, Steve S R, et al. Correlation of endorectal 2D J-PRESS findings with pathological Gleason scores in prostate cancer patients[J]. NMR Biomed, 2010, 23: 257-261.
[47] Thomas M A , Lange T, Velan S S, et al. Two-dimensional MR spectroscopy of healthy and cancerous prostates in vivo[J]. Magn Reson Mater Phys Biol Med, 2008, 21: 443-458.
[48] Lange T, Schulte R F, Boesiger P. Quantitative J-resolved prostate spectroscopy using two-dimensional prior-knowledge fitting[J]. Magn Reson Med, 2008, 59: 966-972.
[49] Thomas M A, Binesh N, Yue K, et al. Adding a new spectral dimension to localized 1H MR spectroscopy of human prostates using an endorectal coil[J]. Spectroscopy, 2003, 17: 521-527.
[50] Thomas M A, Binesh N, Yue K, et al. Volume localized two-dimensional correlated magnetic resonance spectroscopy of human breast cancer[J]. J Magn Reson Imaging, 2001, 14: 181-186.
[51] Kupce E, Freeman R. Two-dimensional Hadamard spectroscopy[J]. J Magn Reson, 2003, 162: 300-310.
[52] Zhao Ming-fang(赵明芳), Wu Can(吴灿), Lin Yu-lan(林玉兰), et al. Single-scan ultrafast methods and their applications in NMR(单扫描快速采样方法及其在NMR中的应用)[J]. Chinese J Magn Reson(波谱学杂志), 2009, 26(4): 541-559.
[53] Wu C, Zhao M F, Cai S H, et al. Ultrafast 2D cosy with constant-time phase-modulated spatial encoding[J]. J Magn Reson, 2010, 204: 82-90.
[54] Zhang Zhi-yong(张志勇), Lin Mei-jin(林美金), Lin Yu-lan(林玉兰), et al. Progress of high-resolution liquid NMR spectroscopy in inhomogeneous and unstable fields(不均匀不稳定磁场下高分辨液体核磁共振新技术的研究进展)[J]. Chinese J Magn Reson(波谱学杂志), 2010, 27(3): 310-325.
[55] Huang Y Q, Cai S H, Lin Y Q, et al. An intermolecular single-quantum coherence detection scheme for high-resolution twodimensional J-resolved spectroscopy in inhomogeneous fields[J]. Appl Spectrosc, 2010, 64(2): 235-240.
[56] Huang Y Q, Zhang W, Cai S H, et al. Homonuclear decoupled proton NMR spectra in modest to severe inhomogeneous fields via distant dipolar interactions[J]. Chem Phys Lett, 2010, 492: 174-178.
[57] Huang Y Q, Chen X, Cai S H, et al. High-resolution two-dimensional correlation spectroscopy in inhomogeneous fields: new application of intermolecular zero-quantum coherences[J]. J Chem Phys, 2010, 132(13): 134507. |