[1] Austin R H, Beeson K W, Eisenstein L, et al. Dynamics of ligand binding to myoglobin[J]. Biochemistry, 1975, 14(24): 5 355-5 373.
[2] Henzler-Wildman K, Kern D. Dynamic personalities of proteins[J]. Nature, 2007, 450(7 172): 964-972.
[3] Kay L E, Torchia D A, Bax A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease[J]. Biochemistry, 1989, 28(23): 8 972-8 979.
[4] Palmer A G 3rd, Massi F. Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy[J]. Chem Rev, 2006, 106(5): 1 700-1 719.
[5] Mittermaier A, Kay L E. New tools provide new insights in NMR studies of protein dynamics[J]. Science, 2006, 312(5 771): 224-228.
[6] Iwahara J, Schwieters C D, Clore G M. Ensemble approach for NMR structure refinement against (1)H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule[J]. J Am Chem Soc, 2004, 126(18): 5 879-5 896.
[7] Solomon I. Relaxation processes in a system of two spins[J]. Phys Rev, 1955, 99: 559-565.
[8] Bloembergen N. Proton relaxation times in paramagnetic solutions[J]. J Chem Phys, 1957, 27(2): 572-573.
[9] Iwahara J, Tang C, Clore G M. Practical aspects of 1H transverse paramagnetic relaxation enhancement measurements on macromolecules[J]. J Magn Reson, 2007, 184(2): 185-195.
[10] Gillespie J R, Shortle D. Characterization of long-range structure in the denatured state of staphylococcal nuclease. I. Paramagnetic relaxation enhancement by nitroxide spin labels[J]. J Mol Biol, 1997, 268(1): 158-169.
[11] Su X C, Otting G. Paramagnetic labelling of proteins and oligonucleotides for NMR[J]. J Biomol NMR, 2010, 46(1): 101-112.
[12] Ikegami T, Verdier L, Sakhaii P, et al. Novel techniques for weak alignment of proteins in solution using chemical tags coordinating lanthanide ions[J]. J Biomol NMR, 2004, 29(3): 339-349.
[13] Berliner L J, Grunwald J, Hankovszky H O, et al. A novel reversible thiol-specific spin label: papain active site labeling and inhibition\
[J]. Anal Biochem, 1982, 119(2): 450-455.
[14] Ebright Y W, Chen Y, Pendergrast P S, et al. Incorporation of an EDTA-metal complex at a rationally selected site within a protein: application to EDTA-iron DNA affinity cleaving with catabolite gene activator protein (CAP) and Cro[J]. Biochemistry, 1992, 31(44): 10 664-10 670.
[15] Kruck T P A, Lau S, Sarkar B. Molecular design to mimic the copper(II) transport site of human albumin: studies of equilibria between copper(II) and glycylglycyl-L-histidine-N-methyl amide and comparison with human albumin[J]. Can J Chem, 1976, 54: 1 300-1 308.
[16] Donaldson L W, Skrynnikov N R, Choy W Y, et al. Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy[J]. J Am Chem Soc, 2001, 123(40): 9 843-9 847.
[17] Mal T K, Ikura M, Kay L E. The ATCUN domain as a probe of intermolecular interactions: application to calmodulin-peptide complexes[J]. J Am Chem Soc, 2002, 124(47): 14 002-14 003.
[18] Nitz M, Sherawat M, Franz K J, et al. Structural origin of the high affinity of a chemically evolved lanthanide-binding peptide[J]. Angew Chem Int Ed Engl, 2004, 43(28): 3 682-3 685.
[19] Barthelmes K, Reynolds A M, Peisach E, et al. Engineering encodable lanthanide-binding tags into loop regions of proteins[J]. J Am Chem Soc, 2011, 133(4): 808-819.
[20] Su X C, Huber T, Dixon N E, et al. Site-specific labelling of proteins with a rigid lanthanide-binding tag[J]. ChemBioChem, 2006, 7(10): 1 599-1 604.
[21] Clore G M, Iwahara J. Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes[J]. Chem Rev, 2009, 109(9): 4 108-4 139.
[22] Pintacuda G, Otting G. Identification of protein surfaces by NMR measurements with a paramagnetic Gd(III) chelate[J]. J Am Chem Soc, 2002, 124(3): 372-373.
[23] Hernandez G, Teng C L, Bryant R G, et al. O2 penetration and proton burial depth in proteins: applicability to fold family recognition
[J]. J Am Chem Soc, 2002, 124(16): 4 463-4 472.
[24] Yu Kai-chao(俞开潮), Lv Zhi-yong(吕志勇), Yao Yao(姚遥), et al. Recent progress in development of bio-active MRI contrast agents(生物激活磁共振成像造影剂的研究进展)[J]. Chinese J Magn Reson(波谱学杂志), 2010, 27(3): 355-368.
[25] Battiste J L, Wagner G. Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data[J]. Biochemistry, 2000, 39(18): 5 355-5 365.
[26] Gaponenko V, Howarth J W, Columbus L, et al. Protein global fold determination using site-directed spin and isotope labeling[J]. Protein Sci, 2000, 9(2): 302-309.
[27] Dvoretsky A, Abusamhadneh E M, Howarth J W, et al. Solution structure of calcium-saturated cardiac troponin C bound to cardiac troponin I[J]. J Biol Chem, 2002, 277(41): 38 565-38 570.
[28] Salmon L, Nodet G, Ozenne V, et al. NMR characterization of long-range order in intrinsically disordered proteins[J]. J Am Chem Soc, 2010, 132(24): 8 407-8 418.
[29] Gillespie J R, Shortle D. Characterization of long-range structure in the denatured state of staphylococcal nuclease. II. Distance restraints from paramagnetic relaxation and calculation of an ensemble of structures[J]. J Mol Biol, 1997, 268(1): 170-184.
[30] Liang B, Bushweller J H, Tamm L K. Site-directed parallel spin-labeling and paramagnetic relaxation enhancement in structure determination of membrane proteins by solution NMR spectroscopy[J]. J Am Chem Soc, 2006, 128(13): 4 389-4 397.
[31] Iwahara J, Clore G M. Detecting transient intermediates in macromolecular binding by paramagnetic NMR[J]. Nature, 2006, 440(7 088): 1 227-1 230.
[32] Tam R, Saier M H, Jr. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria\
[J]. Microbiol Rev, 1993, 57(2): 320-346.
[33] Sharff A J, Rodseth L E, Spurlino J C, et al. Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis[J]. Biochemistry, 1992, 31(44): 10 657-10 663.
[34] Quiocho F A, Spurlino J C, Rodseth L E. Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor[J]. Structure, 1997, 5(8): 997-1 015.
[35] Evenas J, Tugarinov V, Skrynnikov N R, et al. Ligand-induced structural changes to maltodextrin-binding protein as studied by solution NMR spectroscopy[J]. J Mol Biol, 2001, 309(4): 961-974.
[36] Tang C, Schwieters C D, Clore G M. Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR[J]. Nature, 2007, 449(7 165): 1 078-1 082.
[37] Tang C, Iwahara J, Clore G M. Visualization of transient encounter complexes in protein-protein association[J]. Nature, 2006, 444(7 117): 383-386.
[38] Suh J Y, Tang C, Clore G M. Role of electrostatic interactions in transient encounter complexes in protein-protein association investigated by paramagnetic relaxation enhancement[J]. J Am Chem Soc, 2007, 129(43): 12 954-12 955.
[39] Garrett D S, Seok Y J, Peterkofsky A, et al. Solution structure of the 40,000 Mr phosphoryl transfer complex between the N-terminal domain of enzyme I and HPr[J]. Nat Struct Biol, 1999, 6(2): 166-173.
[40] Tang C, Louis J M, Aniana A, et al. Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease[J]. Nature, 2008, 455(7 213): 693-696.
[41] Tang C, Ghirlando R, Clore G M. Visualization of transient ultra-weak protein self-association in solution using paramagnetic relaxation enhancement[J]. J Am Chem Soc, 2008, 130(12): 4 048-4 056.
[42] Hu Yun-fei(胡蕴菲), Jin Chang-wen(金长文). NMR studies of protein solution strucutres and dynamics(蛋白质溶液结构及动力学的核磁共振研究)[J]. Chinese J Magn Reson(波谱学杂志), 2009, 26(2): 151-172.
[43] Madl T, Felli I C, Bertini I, et al. Structural analysis of protein interfaces from 13C direct-detected paramagnetic relaxation enhancements[J]. J Am Chem Soc, 2010, 132(21): 7 285-7 287.
[44] Takeuchi K, Heffron G, Sun Z Y, et al. Nitrogen-detected CAN and CON experiments as alternative experiments for main chain NMR resonance assignments[J]. J Biomol NMR, 2010, 47(4): 271-282.
[45] Keizers P H, Saragliadis A, Hiruma Y, et al. Design, synthesis, and evaluation of a lanthanide chelating protein probe: CLaNP-5 yields predictable paramagnetic effects independent of environment[J]. J Am Chem Soc, 2008, 130(44): 14 802-14 812.
[46] Saio T, Ogura K, Yokochi M, et al. Two-point anchoring of a lanthanide-binding peptide to a target protein enhances the paramagnetic anisotropic effect[J]. J Biomol NMR, 2009, 44(3): 157-166.
[47] Yu D, Volkov A N, Tang C. Characterizing dynamic protein-protein interactions using differentially scaled paramagnetic relaxation enhancement[J]. J Am Chem Soc, 2009, 131(41): 17 291-17 297. |