[1] Koo C M, Wu L F, Lim L S, et al. Microstructure and mechanical properties of semicrystalline-rubberysemicrystalline triblock copolymers[J]. Macromolecules, 2005, 38(14): 6 090-6 098.
[2] Dietrich U, Hackmann M, Rieger B, et al. Control of stereoerror formation with high-activity “dual-side” zirconocene catalysts: A novel strategy to design the properties of thermoplastic elastic polypropenes[J]. J Am Chem Soc, 1999, 121(18): 4 348-4 355.
[3] Dong X C, Wang L, Zhou J F, et al. Preparation of nano-polyethylene fibres using TiCl4/MCM-41 catalytic system
[J]. Catal Commun, 2006, 7(1): 1-5.
[4] Wang J F, Wang L, Gao H Q, et al. Study on ethylene polymerization using a novel MgCl2/SiO2-supported Ziegler-natta catalyst[J]. Polym Int, 2006, 55(3): 299-304.
[5] Dong X C, Wang Li, Zhou J F, et al. Preparation of nanosheet polyethylene with heterogeneous metallocene catalyst and formation mechanism of the nanosheet polyethylene[J]. J Phys Chem B, 2006, 110(26): 13 045-13 049.
[6] Dong X, Wang L, Jiang G H, et al. Preparation of nanopolyethylene wire with carbon nanotubes-supported CP2ZrCl2 catalyst[J]. J Appl Polym Sci, 2006, 101(3): 1 291-1 294.
[7] Guan Z B. Control of polymer topology by chain-walking catalysts[J]. Chem Eur J, 2002, 8(14): 3 068-3 092.
[8] Guan Z B, Cotts P M, McCord E F, et al. Chain walking: A new strategy to control polymer topology[J]. Sciene, 1999, 283(5410): 2 059-2 062.
[9] Johnson L K, Killian C M, Brookhart M. New Pd(I1)- and Ni(I1)- based catalysts for polymerization of ethylene and a-Olefins[J]. J Am Chem Soc, 1995, 117(23): 6 414-6 415.
[10] Cherian A E, Rose J M, Lobkovsky E B, et al. A C2-symmetric, living a-diimine Ni(II) catalyst: regioblock copolymers from propylene[J]. J Am Chem Soc, 2005, 127(40): 13 770-13 771.
[11] Arriola D J, Carnahan E M, Hustad P D, et al. Catalytic production of olefin block copolymers via chain shuttling polymerization[J]. Science, 2006, 312(5774): 714-719.
[12] Hustad P D, Kuhlman R L, Arriola D J, et al. Continuous production of ethylene-based diblock copolymers ising- coordinative chain transfer polymerization[J]. Macromolecules 2007, 40(20): 7 061-7 064.
[13] Xiao A G, Wang L, Liu Q Q, et al. A novel linear-hyperbranched multiblock polyethylene produced from ethylene monomer alone via chain walking and chain shuttling polymerization[J]. Macromolecules 2009, 42(6): 1 834-1 837.
[14] Ko Y S, Han T K, Park J W, et al. Propene polymerization catalyzed over MCM-41 and VIP-5-supported Et(Ind)2 ZrCl2 catalysts[J]. Macromol Rapid Commun 1996, 17(11): 749-758.
[15] Meurs M V, Britovsek G J, Gibson V C, et al. Polyethylene chain growth on zinc catalyzed by olefin polymerization catalysts: A comparative investigation of highly active catalyst systems across the transition series[J]. J Am Chem Soc, 2005, 127(27): 9 913-9 923.
[16] Ittel S D, Johnson L K, Brookhart M. Late-metal catalysts for ethylene homo- and copolymerization[J]. Chem Rev, 2000, 100(4): 1 169-1 204.
[17] Galland G B, Souza R F, Mauler R S, et al. 13C NMR determination of the composition of linear low-density polyethylene obtained with-[η3-Methallyl-nickel-diimine]PF6 complex[J]. Macromolecules 1999, 32(5): 1 620-1 625.
[18] Lindeman L P, Adams J Q. Carbon13-nuclear magnetic resonance spectrometry chemical shifts for the paraffins through C9[J]. Ana Chem. 1971, 43(10), 1 245-1 252.
[19] Yang H X. Synthesis of novel aluminoxanes and their cocatalytic performances in the ethylene polymerization catalyzed by late transition metal complexes[D]. Doctoral dissertation, Zhejiang University, 2003.
[20] Patricia M C, Guan Z B, Elizabeth M, et al. Novel Branching Topology in Polyethylenes As Revealed by Light Scattering and 13C NMR[J]. Macromolecules, 2000, 33(19): 6 945-6 952.
[21] Xiao A G. Study on Preparation, Characterization and Properties of Novel Hyperbranched Polyolefins[D]. Doctoral dissertation, Zhejiang University, 2009.
|