[1] Zweier J L, Kuppusamy P, Lutty G A. Measurement of endothelial cell free radical generation: evidence for a central mechanism of free radical injury in postischemic tissues[J]. Proc Natl Acad Sci U S A, 1988, 85(11): 4 046-4 050.
[2] He G, Zhao X, Chen Y R, et al. Endothelium-derived nitric oxide regulates postischemic myocardial oxygenation and oxygen consumption by modulation of mitochondrial electron transport[J]. Circulation, 2005, 111(22): 2 966-2 972.
[3] Lizasoain I, Moro M A, Knowles R G, et al. Nitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose[J]. Biochem J, 1996, 314(Pt 3): 877-880.
[4] Loke K E, McConnell P I, Tuzman J M, et al. Endogenous endothelial nitric oxide synthase-derived nitric oxide is a physiological regulator of myocardial oxygen consumption[J]. Circ Res, 1999, 84(7): 840-845.
[5] Trochu J N, Bouhour J B, Kaley G, et al. Role of endothelium-derived nitric oxide in the regulation of cardiac oxygen metabolism: implications in health and disease[J]. Circ Res, 2000, 87(12): 1 108-1 117.
[6] Wang P, Zweier J L. Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. Evidence for peroxynitrite-mediated reperfusion injury[J]. J Biol Chem, 1996, 271(46): 29 223-29 230.
[7] Wolin M S, Xie Y W, Hintze T H. Nitric oxide as a regulator of tissue oxygen consumption[J]. Curr Opin Nephrol Hypertens, 1999, 8(1): 97-103.
[8] Ohnishi S T, Ohnishi T, Muranaka S, et al. A possible site of superoxide generation in the complex I segment of rat heart mitochondria[J]. J Bioenerg Biomembr, 2005, 37(1): 1-15.
[9] Vinogradov A D, Grivennikova V G. Generation of superoxide-radical by the NADH: ubiquinone oxidoreductase of heart mitochondria[J]. Biochemistry (Mosc), 2005, 70(2): 120-127.
[10] Sohal R S. Mitochondria generate superoxide anion radicals and hydrogen peroxide[J]. Faseb J, 1997, 11(14): 1 269-1 270.
[11] Poderoso J J, Carreras M C, Lisdero C, et al. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles[J]. Arch Biochem Biophys, 1996, 328(1): 85-92.
[12] Ferdinandy P, Schulz R. Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning[J]. Br J Pharmacol, 2003, 138(4): 532-543.
[13] Moncada S, Erusalimsky J D. Does nitric oxide modulate mitochondrial energy generation and apoptosis?
[J]. Nat Rev Mol Cell Biol, 2002, 3(3): 214-220.
[14] Beltran B, Mathur A, Duchen M R, et al. The effect of nitric oxide on cell respiration: A key to understanding its role in cell survival or death[J]. Proc Natl Acad Sci U S A, 2000, 97(26): 14 602-14 607.
[15] Cleeter M W, Cooper J M, Darley-Usmar V M, et al. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases[J]. FEBS Lett, 1994, 345(1): 50-54.
[16] Angelos M G, Kutala V K, Torres C A, et al. Hypoxic reperfusion of the ischemic heart and oxygen radical generation[J]. Am J Physiol Heart Circ Physiol, 2006, 290(1): H341-H347.
[17] Klawitter P F, Murray H N, Clanton T L, et al. Reactive oxygen species generated during myocardial ischemia enable energetic recovery during reperfusion[J]. Am J Physiol Heart Circ Physiol, 2002, 283(4): H1 656-H1 661.
[18] Zweier J L, Kuppusamy P. Electron paramagnetic resonance measurements of free radicals in the intact beating heart: a technique for detection and characterization of free radicals in whole biological tissues[J]. Proc Natl Acad Sci U S A, 1988, 85(15): 5 703-5 707.
[19] Zweier J L, Chzhan M, Ewert U, et al. Development of a highly sensitive probe for measuring oxygen in biological tissues[J]. J Magn Reson B, 1994, 105(1): 52-57.
[20] Swartz H M, Dunn J F. Measurements of oxygen in tissues: overview and perspectives on methods[J]. Adv Exp Med Biol, 2003, 530: 1-12.
[21] Ilangovan G, Liebgott T, Kutala V K, et al. EPR oximetry in the beating heart: myocardial oxygen consumption rate as an index of postischemic recovery[J]. Magn Reson Med, 2004, 51(4): 835-842.
[22] Ilangovan G, Zweier J L, Kuppusamy P. Mechanism of oxygen-induced EPR line broadening in lithium phthalocyanine microcrystals[J]. J Magn Reson, 2004, 170(1): 42-48.
[23] Halpern H J, Yu C, Peric M, et al. Oxymetry deep in tissues with low-frequency electron paramagnetic resonance[J]. Proc Natl Acad Sci U S A, 1994, 91(26): 13 047-13 051.
[24] Swartz H M, Bacic G, Friedman B, et al. Measurements of pO2 in vivo, including human subjects, by electron paramagnetic resonance[J]. Adv Exp Med Biol, 1994, 361: 119-128.
[25] Ji L L, Fu R G, Waldrop T G, et al. Myocardial response to regional ischemia and reperfusion in vivo in rat heart
[J]. Can J Physiol Pharmacol, 1993, 71(10/11): 811-817.
[26] Liu K J, Gast P, Moussavi M, et al. Lithium phthalocyanine: a probe for electron paramagnetic resonance oximetry in viable biological systems[J]. Proc Natl Acad Sci U S A, 1993, 90(12): 5 438-5 442.
[27] Tanoue Y, Herijgers P, Meuris B, et al. Ischemic preconditioning reduces unloaded myocardial oxygen consumption in an in vivo sheep model[J]. Cardiovasc Res, 2002, 55(3): 633-641.
[28] An J, Camara A K, Rhodes S S, et al. Warm ischemic preconditioning improves mitochondrial redox balance during and after mild hypothermic ischemia in guinea pig isolated hearts[J]. Am J Physiol Heart Circ Physiol, 2005, 288(6): H2 620-2 627.
[29] Zhu X, Liu B, Zhou S, et al. Ischemic preconditioning prevents in vivo hyperoxygenation in postischemic myocardium with preservation of mitochondrial oxygen consumption[J]. Am J Physiol Heart Circ Physiol, 2007, 293(3): H1 442-1 450.
[30] Bolli R. The early and late phases of preconditioning against myocardial stunning and the essential role of oxyradicals in the late phase: an overview[J]. Basic Res Cardiol, 1996, 91(1): 57-63.
[31] Shen W, Xu X, Ochoa M, et al. Role of nitric oxide in the regulation of oxygen consumption in conscious dogs
[J]. Circ Res, 1994, 75(6): 1 086-1 095.
[32] Roy S, Khanna S, Bickerstaff A A, et al. Oxygen sensing by primary cardiac fibroblasts: a key role of p21(Waf1/Cip1/Sdi1)[J]. Circ Res, 2003, 92(3): 264-271.
[33] Zhu X, Zuo L, Cardounel A J, et al. Characterization of in vivo tissue redox status, oxygenation, and formation of reactive oxygen species in postischemic myocardium[J]. Antioxid Redox Signal, 2007, 9(4): 447-455.
[34] Goda F, Liu K J, Walczak T, et al. In vivo oximetry using EPR and India ink[J]. Magn Reson Med, 1995, 33(2): 237-245.
[35] Alecci M, Colacicchi S, Indovina P L, et al. Three-dimensional in vivo ESR imaging in rats[J]. Magn Reson Imaging, 1990, 8(1): 59-63.
[36] Kuppusamy P, Chzhan M, Vij K, et al. Three-dimensional spectral-spatial EPR imaging of free radicals in the heart: a technique for imaging tissue metabolism and oxygenation[J]. Proc Natl Acad Sci U S A, 1994, 91(8): 3 388-3 392.
[37] He G, Deng Y, Li H, et al. EPR/NMR co-imaging for anatomic registration of free-radical images
[J]. Magn Reson Med, 2002, 47(3): 571-578.
[38] He G, Petryakov S, Samouilov A, et al. Development of a resonator with automatic tuning and coupling capability to minimize sample motion noise for in vivo EPR spectroscopy[J]. J Magn Reson, 2001, 149(2): 218-227.
[39] Hirata H, He G, Deng Y, et al. A loop resonator for slice-selective in vivo EPR imaging in rats[J]. J Magn Reson, 2008, 190(1): 124-134.
[40] He G, Shankar R A, Chzhan M, et al. Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging[J]. Proc Natl Acad Sci U S A, 1999, 96(8): 4 586-4 591.
[41] He G, Evalappan S P, Hirata H, et al. Mapping of the B1 field distribution of a surface coil resonator using EPR imaging[J]. Magn Reson Med, 2002, 48(6): 1 057-1 062.
[42] Sheridan W G, Lowndes R H, Young H L. Intraoperative tissue oximetry in the human gastrointestinal tract
[J]. Am J Surg, 1990, 159(3): 314-319.
[43] Knudson M M, Bermudez K M, Doyle C A, et al. Use of tissue oxygen tension measurements during resuscitation from hemorrhagic shock[J]. J Trauma, 1997, 42(4): 608-614; discussion 614-606.
[44] Hauser C J, Locke R R, Kao H W, et al. Visceral surface oxygen tension in experimental colitis in the rabbit
[J]. J Lab Clin Med, 1988, 112(1): 68-71.
[45] Cooper G J, Sherry K M, Thorpe J A. Changes in gastric tissue oxygenation during mobilisation for oesophageal replacement[J]. Eur J Cardiothorac Surg, 1995, 9(3): 158-160; discussion 160.
[46] Larsen P N, Moesgaard F, Naver L, et al. Gastric and colonic oxygen tension measured with a vacuum-fixed oxygen electrode[J]. Scand J Gastroenterol, 1991, 26(4): 409-418.
[47] Landow L, Phillips D A, Heard S O, et al. Gastric tonometry and venous oximetry in cardiac surgery patients
[J]. Crit Care Med, 1991, 19(10): 1 226-1 233.
[48] Kram H B, Appel P L, Fleming A W, et al. Assessment of intestinal and renal perfusion using surface oximetry
[J]. Crit Care Med, 1986, 14(8): 707-713.
[49] Uribe N, Garcia-Granero E, Belda J, et al. Evaluation of residual vascularisation in oesophageal substitution gastroplasty by surface oximetry-capnography and photoplethysmography. An experimental study[J]. Eur J Surg, 1995, 161(8): 569-573.
[50] Swartz H M, Clarkson R B. The measurement of oxygen in vivo using EPR techniques[J]. Phys Med Biol, 1998, 43(7): 1 957-1 975.
[51] Zuo L, Clanton T L. Reactive oxygen species formation in the transition to hypoxia in skeletal muscle
[J]. Am J Physiol Cell Physiol, 2005, 289(1): C207-C216.
[52] Al-Obaidi M K, Etherington P J, Barron D J, et al. Myocardial tissue oxygen supply and utilization during coronary artery bypass surgery: evidence of microvascular no-reflow[J]. Clin Sci (Lond), 2000, 98(3): 321-328.
|