波谱学杂志 ›› 2010, Vol. 27 ›› Issue (1): 1-21.

• 恭祝徐广智先生八十华诞(专辑) • 上一篇    下一篇

在体电子自旋共振(EPR)波谱和成像技术在生物医学中的应用

  

  1. The Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA
  • 收稿日期:2009-12-15 出版日期:2010-03-05 发布日期:2010-03-05
  • 基金资助:

    American Heart Association Grant (0435299N); National Heart, Lung, and Blood Institute Grants (HL-081630(He)).

Biomedical Applications of In Vivo Electron Paramagnetic Resonance Spectroscopy and Imaging

  1. The Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA
  • Received:2009-12-15 Online:2010-03-05 Published:2010-03-05
  • Supported by:

    American Heart Association Grant (0435299N); National Heart, Lung, and Blood Institute Grants (HL-081630(He)).

摘要:

活性氧和氮自由基(ROS/RNS)在一系列的人类疾病中扮演着双重角色. 它们可以是氧化剂, 诱导氧化状态, 导致组织损伤. 它们又可以是信号传导因子, 诱发保护性反应, 使得被调节的组织器官经受得起更强的损伤. 鉴于它们在生物医学中的重要作用, 检测它们产生和分布的技术的研究因而变得必要和紧迫. 在体电子自旋共振(EPR)波谱和成像技术渐已被应用于活体生物体系中用以表针和显像ROS/RNS. EPR 波谱特性(包括线宽、强度和寿命)以及空间分布信息已为动物甚至人体病理模型中氧化还原状态和氧分布的检测提供不可缺少的依据. 该文将简单描述和讨论一系列在体EPR 波谱和成像技术在器官和组织中的应用, 其中包括活体组织氧化还原状态, 活体组织氧分布和时间演化, 自由基空间以及谱-空间成像等.

关键词: 电子自旋共振(EPR), 自由基, EPR成像, 氧化还原状态,  氧检测

Abstract:

Reactive oxygen and nitrogen species (ROS/RNS) has been a double-edged sword in the pathogenesis of a number of human diseases. It can be an oxidant and cause oxidative stress leading to progression of tissue injury. It can also be a secondary messenger triggering protective responses so as to enable the conditioned tissue to endure further injurious insults. Due to its important role in biology, a reliable technique to measure the generation and distribution is needed. In vivo electron paramagnetic resonance (EPR) spectroscopy and imaging technique has emerged as an important tool for characterizing and mapping of free radicals in biological systems. The EPR spectral characteristics including line-width, intensity, and lifetime, as well as spatial distribution of the radicals can provide vital information to enable the measurement of localized tissue redox status and oxygenation in disease models and even humans. In this brief review, a number of in vivo applications of EPR spectroscopy and imaging are discussed, including redox and oximetry spectroscopy, spatial and spectral-spatial imaging of organs and tissues.

Key words: EPR, free radicals, EPR imaging, redox status, oximetry

中图分类号: