波谱学杂志 ›› 1997, Vol. 14 ›› Issue (6): 507-514.

• 研究论文 • 上一篇    下一篇

神经网络在波谱分析中的应用:用亚图估计和预测烷烃的13C NMR

李志良1, 黄莺1,3, 胡芳1, 谌其亭1,2, 彭升阳4, 莫立宇4, 陈刚1, 余般梅4   

  1. 1 湖南大学化学化工学院, 药物研究所, 长沙 410082;
    2 长沙电力学院化学系, 基础部, 长沙 410077;
    3 湖南中医学院药学分院, 化学部, 长沙 410004;
    4 国防科技大学应用物理系, 系统工程系, 长沙 410073
  • 收稿日期:1997-05-09 修回日期:1997-06-23 出版日期:1997-12-05 发布日期:2018-01-22
  • 作者简介:李志良,男,35岁,博士,教授
  • 基金资助:
    国家自然科学基金,国家教委基金及机械工业部跨世纪学术带头人专项基金资助项目

DNEURAL NETWORKS IN SPECTROSCOPY Estimation and Prediction of Chemical Shifts of 13C NMR in Alkanes by Using Subgraphs

Li Zhiliang1, Huang Ying1,3, Hu Fang1, Sheng Qiting1,2, Peng Shangyang4, Mo Liyu4, Chen Gang1, Yu Banmei4   

  1. 1 Department of Chemistry and Chemical Engineering, Institute of Chemometrics and Pharmacy ICP, Hunan University, Changsha 410082;
    2 Department of Chemistry and Foundament Sciences, Changsha Electrical Power University, Changsha 410077;
    3 Laboratory of Chemistry, Subfaculty of Pharmaceutical Science, Hunan Chinese Medical University, Changsha 410004;
    4 Department of Applied Physics and System Engineering, Changsha Institute of Technology, Changsha 410073
  • Received:1997-05-09 Revised:1997-06-23 Online:1997-12-05 Published:2018-01-22

摘要: 系统研究了神经网络在波谱分析中的应用,采用多层/三层前馈神经网络(MLFNN/TLFNN)以误差反传及改进算法(BP,MBP)估计和预测了C1~C10的60余种烷烃的化学位移.烷烃中碳原子由十余种对应于所谓根亚树的相嵌频率描述子所决定.这些描述子等于由1至6个碳原子组成的更小结构骨架组成.说明了所用描述子作为很有用的工具可适当地描述烷烃中碳原子所处微环境.考察了含不同隐节点的神经网络,发现3个隐节点构成的神经网络给出最好结果.同时还比较了多元线性回归与本文神经网络的计算结果.

关键词: 神经网络, 波谱分析, 亚图, 烷烃, 核磁共振碳谱

Abstract: In this article, neural networks (NN) with modified backpropagation (MBP) were employed for estimation and prediction of 13C NMR chemical shifts in alkanes from one or two through nine or ten carbon atoms. Carbon atoms in alkanes were determined by 16 descriptors which correspond to the so-called embedding frequecies of rooted subtrees or rooted subgraphs. These descriptors were equal to appearance numbers of smaller substructural skeletons composed of one through six carbon atoms (C1~C6). It was demonstrated that the employed descriptors offered a quite useful formal technique for the proper and adequate description of environment of carbon atoms in alkanes. Neural networks with different numbers of hidden neurons were examined. NN with three hidden neurons gave the best results. The results of NN computation were compared with those of multiple linear regression (MLR) calculations. Good results were obtained by both techniques.

Key words: Neural Networks in Spectroscopy, Chemical shifts of 13C NMR, Alkanes, Rooted subtrees and rooted subgraphs, Modified backpropagation (MBP), Multiple linear regression (MLR)