波谱学杂志 ›› 1994, Vol. 11 ›› Issue (4): 345-351.

• 研究论文 • 上一篇    下一篇

特形脉冲的欧拉角

周进元, 李丽云, 叶朝辉   

  1. 中国科学院武汉物理研究所波谱与原子分子物理国家重点实验室, 武汉 430071
  • 收稿日期:1993-11-22 修回日期:1994-03-21 出版日期:1994-12-05 发布日期:2018-01-20

THE EULER ANGLES FORSHAPED PULSES

Zhou Jinyuan, Li Liyun, Ye Chaohui   

  1. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan institute ofPhysics, The Chinese Academy of Sciences, Wuhan 430071
  • Received:1993-11-22 Revised:1994-03-21 Online:1994-12-05 Published:2018-01-20

摘要: 本文提出了用量子力学的空间转动变换算符描述特形脉冲的方法。它把任意的特形脉冲用三个欧拉角来表示,并且使得在特形脉冲下的相干演化可以很容易地利用多极NMR理论,张量算符理论或者积算符理论来分析,作为例子,用数值方法计算了高斯脉冲的三个参数。

关键词: 特形脉冲, 欧拉角, 欧拉几何方程

Abstract: he propagator of a shaped pulse is taken as the rotation operator with the three Euler angles. The coherence evolutions under the shaped pulse are described by Multipole NMR, the tensor operator formalism, and the Cartesian operator formalism. The numerical calculation for a Gaussian-shaped pulse is made as an example.

Key words: Shaped pulse, Euler angles, Euler geometric equations